Bayesian Inference in stochastic process to identify mortality attributed to sepsis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12082024-083827/ |
Resumo: | This work introduces a new approach to calculating attributable population fractions (PAF) and attributable hazard functions (AHF) within the context of stochastic processes and non-homogeneous Markov chains, aiming to reconcile this approach with existing literature. It begins by discussing the concept, motivation, and origin of PAF, highlighting its flexibility in different study designs in Chapter 1. A national-scale study, involving over 3800 hospitalized patients across 38 medical centers, and relating exposure to sepsis over a period of hospitalization to the outcomes of death and discharge, served as the motivation for developing the new presented approach, as exposed in Chapter 2. Chapter 3 provides a comprehensive overview of calculating PAF and AHF, including time-dependent variations. Chapter 4 delves into the Bayesian estimation of transition probabilities in Markov chains, covering both homogeneous and heterogeneous cases. Our proposed Adapted Attributable Hazard Fraction (AAHF) is introduced in Chapter 5, incorporating failure rate formulas from competing risks analysis, the theory of non-homogeneous discrete Markov chains, and survival analysis. This allows for the calculation of metrics for both a specific set of covariates (subpopulation) and general measures. The new approach enables inference on the transition probabilities between the observed states of individuals and applies these in constructing competing risk failure rates, which, in turn, structure the AAHF formula for the outcome under study, in this case, patient mortality. Moreover, it is innovative in being a dynamic measure over time, as well as the effects of covariates. Chapter 6 applies this new approach to a filtered dataset from the motivational study, observing transitions in patient outcomes (discharge and death) and risk factors (sepsis and non sepsis) over time. The results of the average AAHF are presented. Finally, in Chapter 7 we have the concluding remarks of the study that sheds light on the delayed impact of sepsis on mortality in hospitalized patients. Initially (days 1-13), there is no significant difference in mortality attributable to sepsis exposure, suggesting effective early interventions or unidentified high-risk patients. From day 14 to 17, sepsis-related mortality emerges, with 1% attributed to sepsis exposure, indicating worsening effects with prolonged hospitalization. From day 18 onwards, mortality attributed to sepsis exposure rises to approximately 2%, emphasizing the need for continuous monitoring and aggressive sepsis management in long-term hospitalized patients. |
id |
USP_b1f8d6defeb52b47ba8c6198b35544e1 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12082024-083827 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Bayesian Inference in stochastic process to identify mortality attributed to sepsisInferência Bayesiana em processos estocásticos para identificar mortalidade atribuída à sepseBayesianBayesianaCadeia de Markov não homogêneaFração populacional atribuívelNon-homogeneous Markov chainPopulation attributable fractionProcesso estocásticoStochastic processThis work introduces a new approach to calculating attributable population fractions (PAF) and attributable hazard functions (AHF) within the context of stochastic processes and non-homogeneous Markov chains, aiming to reconcile this approach with existing literature. It begins by discussing the concept, motivation, and origin of PAF, highlighting its flexibility in different study designs in Chapter 1. A national-scale study, involving over 3800 hospitalized patients across 38 medical centers, and relating exposure to sepsis over a period of hospitalization to the outcomes of death and discharge, served as the motivation for developing the new presented approach, as exposed in Chapter 2. Chapter 3 provides a comprehensive overview of calculating PAF and AHF, including time-dependent variations. Chapter 4 delves into the Bayesian estimation of transition probabilities in Markov chains, covering both homogeneous and heterogeneous cases. Our proposed Adapted Attributable Hazard Fraction (AAHF) is introduced in Chapter 5, incorporating failure rate formulas from competing risks analysis, the theory of non-homogeneous discrete Markov chains, and survival analysis. This allows for the calculation of metrics for both a specific set of covariates (subpopulation) and general measures. The new approach enables inference on the transition probabilities between the observed states of individuals and applies these in constructing competing risk failure rates, which, in turn, structure the AAHF formula for the outcome under study, in this case, patient mortality. Moreover, it is innovative in being a dynamic measure over time, as well as the effects of covariates. Chapter 6 applies this new approach to a filtered dataset from the motivational study, observing transitions in patient outcomes (discharge and death) and risk factors (sepsis and non sepsis) over time. The results of the average AAHF are presented. Finally, in Chapter 7 we have the concluding remarks of the study that sheds light on the delayed impact of sepsis on mortality in hospitalized patients. Initially (days 1-13), there is no significant difference in mortality attributable to sepsis exposure, suggesting effective early interventions or unidentified high-risk patients. From day 14 to 17, sepsis-related mortality emerges, with 1% attributed to sepsis exposure, indicating worsening effects with prolonged hospitalization. From day 18 onwards, mortality attributed to sepsis exposure rises to approximately 2%, emphasizing the need for continuous monitoring and aggressive sepsis management in long-term hospitalized patients.Este trabalho apresenta uma abordagem inovadora para o cálculo de frações populacionais atribuíveis (PAF) e funções de risco atribuíveis (AHF) no contexto de processos estocásticos e cadeias de Markov não homogêneas, visando conciliar essa abordagem com a literatura existente. Ele começa discutindo o conceito, motivação e origem da PAF, destacando sua flexibilidade em diferentes desenhos de estudo no Capítulo 1. Um estudo em escala nacional, envolvendo mais de 3800 pacientes hospitalizados em 38 centros médicos, e relacionando a exposição à sepse ao longo de um período de hospitalização aos desfechos de morte e alta, serviu de motivação para o desenvolvimento da nova abordagem apresentada, conforme exposto no Capítulo 2. O Capítulo 3 fornece uma visão abrangente dos cálculos da PAF e AHF, incluindo variações dependentes do tempo. O Capítulo 4 explora a estimação bayesiana de probabilidades de transição em cadeias de Markov, abrangendo casos homogêneos e heterogêneos. Nossa proposta de Função de Risco Atribuível Adaptada (AAHF) é introduzida no Capítulo 5, incorporando fórmulas de taxa de falha de análise de riscos competitivos, teoria de cadeias de Markov discretas não homogêneas e análise de sobrevivência, de modo a se calcular métricas tanto para um específico conjunto de covariáveis (subpopulação) como medidas gerais. A nova abordagem proporciona a inferência sobre as probabilidades de transição entre os estados observados dos indivíduos e aplica as mesmas na construção de taxas de falha de riscos competitivos que, por sua vez, estruturam a fórmula da AAHF para o desfecho estudado, no caso, a morte do paciente. Ainda, é inovadora no sentido de ser uma medida dinâmica ao longo do tempo, assim como os efeitos das covariáveis. O Capítulo 6 aplica a nova abordagem a um conjunto de dados filtrado do estudo motivacional, observando transições nos desfechos dos pacientes (alta e morte) e fatores de risco (sepse e não sepse) ao longo do tempo. Os resultados da AAHF média são apresentados. Finalmente, no Capítulo 7, temos as considerações finais do estudo que lança luz sobre o impacto tardio da sepse na mortalidade de pacientes hospitalizados. Inicialmente (dias 1-13), não há diferença significativa na mortalidade atribuível à exposição à sepse, sugerindo intervenções precoces eficazes ou pacientes de alto risco não identificados. Do dia 14 ao dia 17, emerge a mortalidade relacionada à sepse, com 1% atribuído à exposição à sepse, indicando piora dos efeitos com prolongamento da hospitalização. A partir do dia 18, a mortalidade atribuída à exposição à sepse aumenta para aproximadamente 2%, enfatizando a necessidade de monitoramento contínuo e gerenciamento agressivo da sepse em pacientes hospitalizados a longo prazo.Biblioteca Digitais de Teses e Dissertações da USPFossaluza, VictorEugenio, Nicholas Wagner2024-06-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-12082024-083827/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-14T20:06:50Zoai:teses.usp.br:tde-12082024-083827Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-14T20:06:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bayesian Inference in stochastic process to identify mortality attributed to sepsis Inferência Bayesiana em processos estocásticos para identificar mortalidade atribuída à sepse |
title |
Bayesian Inference in stochastic process to identify mortality attributed to sepsis |
spellingShingle |
Bayesian Inference in stochastic process to identify mortality attributed to sepsis Eugenio, Nicholas Wagner Bayesian Bayesiana Cadeia de Markov não homogênea Fração populacional atribuível Non-homogeneous Markov chain Population attributable fraction Processo estocástico Stochastic process |
title_short |
Bayesian Inference in stochastic process to identify mortality attributed to sepsis |
title_full |
Bayesian Inference in stochastic process to identify mortality attributed to sepsis |
title_fullStr |
Bayesian Inference in stochastic process to identify mortality attributed to sepsis |
title_full_unstemmed |
Bayesian Inference in stochastic process to identify mortality attributed to sepsis |
title_sort |
Bayesian Inference in stochastic process to identify mortality attributed to sepsis |
author |
Eugenio, Nicholas Wagner |
author_facet |
Eugenio, Nicholas Wagner |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fossaluza, Victor |
dc.contributor.author.fl_str_mv |
Eugenio, Nicholas Wagner |
dc.subject.por.fl_str_mv |
Bayesian Bayesiana Cadeia de Markov não homogênea Fração populacional atribuível Non-homogeneous Markov chain Population attributable fraction Processo estocástico Stochastic process |
topic |
Bayesian Bayesiana Cadeia de Markov não homogênea Fração populacional atribuível Non-homogeneous Markov chain Population attributable fraction Processo estocástico Stochastic process |
description |
This work introduces a new approach to calculating attributable population fractions (PAF) and attributable hazard functions (AHF) within the context of stochastic processes and non-homogeneous Markov chains, aiming to reconcile this approach with existing literature. It begins by discussing the concept, motivation, and origin of PAF, highlighting its flexibility in different study designs in Chapter 1. A national-scale study, involving over 3800 hospitalized patients across 38 medical centers, and relating exposure to sepsis over a period of hospitalization to the outcomes of death and discharge, served as the motivation for developing the new presented approach, as exposed in Chapter 2. Chapter 3 provides a comprehensive overview of calculating PAF and AHF, including time-dependent variations. Chapter 4 delves into the Bayesian estimation of transition probabilities in Markov chains, covering both homogeneous and heterogeneous cases. Our proposed Adapted Attributable Hazard Fraction (AAHF) is introduced in Chapter 5, incorporating failure rate formulas from competing risks analysis, the theory of non-homogeneous discrete Markov chains, and survival analysis. This allows for the calculation of metrics for both a specific set of covariates (subpopulation) and general measures. The new approach enables inference on the transition probabilities between the observed states of individuals and applies these in constructing competing risk failure rates, which, in turn, structure the AAHF formula for the outcome under study, in this case, patient mortality. Moreover, it is innovative in being a dynamic measure over time, as well as the effects of covariates. Chapter 6 applies this new approach to a filtered dataset from the motivational study, observing transitions in patient outcomes (discharge and death) and risk factors (sepsis and non sepsis) over time. The results of the average AAHF are presented. Finally, in Chapter 7 we have the concluding remarks of the study that sheds light on the delayed impact of sepsis on mortality in hospitalized patients. Initially (days 1-13), there is no significant difference in mortality attributable to sepsis exposure, suggesting effective early interventions or unidentified high-risk patients. From day 14 to 17, sepsis-related mortality emerges, with 1% attributed to sepsis exposure, indicating worsening effects with prolonged hospitalization. From day 18 onwards, mortality attributed to sepsis exposure rises to approximately 2%, emphasizing the need for continuous monitoring and aggressive sepsis management in long-term hospitalized patients. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12082024-083827/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12082024-083827/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256504744280064 |