Pesquisa de similaridades em imagens mamográficas com base na extração de características.

Detalhes bibliográficos
Autor(a) principal: Santos, Jamilson Bispo dos
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-23052014-010946/
Resumo: Este trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets.
id USP_b3bd580a27cd0b13a75eac8fca7ed6dd
oai_identifier_str oai:teses.usp.br:tde-23052014-010946
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Pesquisa de similaridades em imagens mamográficas com base na extração de características.Search for similarities in mammographic images based feature extraction.CBIRCBIRData miningData miningDigital image processingPattern recognitionProcessamento digital de imagensReconhecimento de padrõesEste trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets.This work presents a computational strategy to consolidate the training of residents radiologists through the classification of mammographic images by similarity, analyzing information from reports made by experienced physicians, obtaining the attributes extracted from medical images. For the discovery of patterns that characterize the similarity apply techniques of digital image processing and data mining in mammographic images. Pattern recognition aims to achieve the classification of certain sets of images in classes. The classification of mammographic is performed using Artificial Neural Networks, through the classifier Self-Organizing Map (SOM). This work uses the image retrieval (CBIR-Content- Based Image Retrieval), considering the similarity in relation to an image already selected for training. The images are classified according to similarity, analyzing attribute information extracted from the images and reports. The identification of similarity was obtained by feature extraction, using the technique of wavelet transform.Biblioteca Digitais de Teses e Dissertações da USPAlmeida Junior, Jorge Rady deSantos, Jamilson Bispo dos2013-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-23052014-010946/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T12:55:58Zoai:teses.usp.br:tde-23052014-010946Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:55:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Pesquisa de similaridades em imagens mamográficas com base na extração de características.
Search for similarities in mammographic images based feature extraction.
title Pesquisa de similaridades em imagens mamográficas com base na extração de características.
spellingShingle Pesquisa de similaridades em imagens mamográficas com base na extração de características.
Santos, Jamilson Bispo dos
CBIR
CBIR
Data mining
Data mining
Digital image processing
Pattern recognition
Processamento digital de imagens
Reconhecimento de padrões
title_short Pesquisa de similaridades em imagens mamográficas com base na extração de características.
title_full Pesquisa de similaridades em imagens mamográficas com base na extração de características.
title_fullStr Pesquisa de similaridades em imagens mamográficas com base na extração de características.
title_full_unstemmed Pesquisa de similaridades em imagens mamográficas com base na extração de características.
title_sort Pesquisa de similaridades em imagens mamográficas com base na extração de características.
author Santos, Jamilson Bispo dos
author_facet Santos, Jamilson Bispo dos
author_role author
dc.contributor.none.fl_str_mv Almeida Junior, Jorge Rady de
dc.contributor.author.fl_str_mv Santos, Jamilson Bispo dos
dc.subject.por.fl_str_mv CBIR
CBIR
Data mining
Data mining
Digital image processing
Pattern recognition
Processamento digital de imagens
Reconhecimento de padrões
topic CBIR
CBIR
Data mining
Data mining
Digital image processing
Pattern recognition
Processamento digital de imagens
Reconhecimento de padrões
description Este trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3141/tde-23052014-010946/
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-23052014-010946/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256531210338304