Pesquisa de similaridades em imagens mamográficas com base na extração de características.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3141/tde-23052014-010946/ |
Resumo: | Este trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets. |
id |
USP_b3bd580a27cd0b13a75eac8fca7ed6dd |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23052014-010946 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Pesquisa de similaridades em imagens mamográficas com base na extração de características.Search for similarities in mammographic images based feature extraction.CBIRCBIRData miningData miningDigital image processingPattern recognitionProcessamento digital de imagensReconhecimento de padrõesEste trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets.This work presents a computational strategy to consolidate the training of residents radiologists through the classification of mammographic images by similarity, analyzing information from reports made by experienced physicians, obtaining the attributes extracted from medical images. For the discovery of patterns that characterize the similarity apply techniques of digital image processing and data mining in mammographic images. Pattern recognition aims to achieve the classification of certain sets of images in classes. The classification of mammographic is performed using Artificial Neural Networks, through the classifier Self-Organizing Map (SOM). This work uses the image retrieval (CBIR-Content- Based Image Retrieval), considering the similarity in relation to an image already selected for training. The images are classified according to similarity, analyzing attribute information extracted from the images and reports. The identification of similarity was obtained by feature extraction, using the technique of wavelet transform.Biblioteca Digitais de Teses e Dissertações da USPAlmeida Junior, Jorge Rady deSantos, Jamilson Bispo dos2013-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-23052014-010946/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T12:55:58Zoai:teses.usp.br:tde-23052014-010946Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:55:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. Search for similarities in mammographic images based feature extraction. |
title |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. |
spellingShingle |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. Santos, Jamilson Bispo dos CBIR CBIR Data mining Data mining Digital image processing Pattern recognition Processamento digital de imagens Reconhecimento de padrões |
title_short |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. |
title_full |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. |
title_fullStr |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. |
title_full_unstemmed |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. |
title_sort |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. |
author |
Santos, Jamilson Bispo dos |
author_facet |
Santos, Jamilson Bispo dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Almeida Junior, Jorge Rady de |
dc.contributor.author.fl_str_mv |
Santos, Jamilson Bispo dos |
dc.subject.por.fl_str_mv |
CBIR CBIR Data mining Data mining Digital image processing Pattern recognition Processamento digital de imagens Reconhecimento de padrões |
topic |
CBIR CBIR Data mining Data mining Digital image processing Pattern recognition Processamento digital de imagens Reconhecimento de padrões |
description |
Este trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-23052014-010946/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-23052014-010946/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256531210338304 |