Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR

Detalhes bibliográficos
Autor(a) principal: Narciso, Everton Note
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-25112014-160734/
Resumo: Os sistemas de processamento de imagens exercem um papel importante no que tange à emulação da visão humana, pois grande parte das informações que as pessoas obtêm do mundo real ocorre por meio de imagens. Desenvolver tais sistemas é uma tarefa complexa e que requer testes rigorosos para garantir a sua confiabilidade. Neste cenário, a seleção de casos de teste é fundamental, pois ajuda a eliminar os dados de teste redundantes e desnecessários enquanto procura manter altas taxas de detecção de erros. Na literatura há várias abordagens para seleção de casos de teste com foco em sistemas de entradas/saídas alfanuméricas, mas a seleção voltada a sistemas complexos (e.g. processamento de imagens) ainda é pouco explorada. Visando a contribuir neste campo de pesquisa, este trabalho apresenta um novo método intitulado Tcs&CbIR, que seleciona e recupera um subconjunto de imagens a partir de um vasto conjunto de teste. Os testes realizados com dois programas de processamento de imagens mostram que a nova abordagem pode superar a seleção aleatória pois, no contexto de avaliação apresentado, a quantidade de casos de teste necessária para revelar a presença de erros foi reduzida em até 87%. Os resultados obtidos revelam, também, o potencial da utilização de CBIR para abstração de informações, a importância da definição de extratores de características adequados e a influência que as funções de similaridade podem exercer na seleção de casos de teste.
id USP_f416e16e9aa41c086b108a16d972d1e9
oai_identifier_str oai:teses.usp.br:tde-25112014-160734
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIRTest Case Selection For Image Processing Systems Using CBIR Concepts.CBIRCBIRImage processing systemsSeleção de casos de testeSistemas de processamento de imagensTest case selectionOs sistemas de processamento de imagens exercem um papel importante no que tange à emulação da visão humana, pois grande parte das informações que as pessoas obtêm do mundo real ocorre por meio de imagens. Desenvolver tais sistemas é uma tarefa complexa e que requer testes rigorosos para garantir a sua confiabilidade. Neste cenário, a seleção de casos de teste é fundamental, pois ajuda a eliminar os dados de teste redundantes e desnecessários enquanto procura manter altas taxas de detecção de erros. Na literatura há várias abordagens para seleção de casos de teste com foco em sistemas de entradas/saídas alfanuméricas, mas a seleção voltada a sistemas complexos (e.g. processamento de imagens) ainda é pouco explorada. Visando a contribuir neste campo de pesquisa, este trabalho apresenta um novo método intitulado Tcs&CbIR, que seleciona e recupera um subconjunto de imagens a partir de um vasto conjunto de teste. Os testes realizados com dois programas de processamento de imagens mostram que a nova abordagem pode superar a seleção aleatória pois, no contexto de avaliação apresentado, a quantidade de casos de teste necessária para revelar a presença de erros foi reduzida em até 87%. Os resultados obtidos revelam, também, o potencial da utilização de CBIR para abstração de informações, a importância da definição de extratores de características adequados e a influência que as funções de similaridade podem exercer na seleção de casos de teste.Image processing systems play a key role when it comes to emulation of human vision, because much of the information that humans capture from the real world occurs through images. Developing such systems is a complex task that requires rigorous testing to ensure their quality and reliability. In this scenario, the test case selection is crucial because it helps to eliminate the redundant and unnecessary test data while it tries to maintain high rates of error detection. In the literature there are several approaches for test cases selection with a focus on systems with alphanumeric inputs and outputs, but the selection focused on complex systems (e.g. image processing) is still unexplored. Aiming to contribute to this research field, this work presents a new method entitled Tcs&CbIR, which selects and retrieves a subset of images from a wide test suite. Tests conducted with two image processing programs show that the new approach can overcome the random selection because, in the context of evaluation presented, the amount of test cases required to detect the presence of the errors was reduced by up to 87%. The results also show the potential use of CBIR for information abstraction, the importance of the definition of suitable extractors of characteristics and the influence of the similarity functions in the test case selection.Biblioteca Digitais de Teses e Dissertações da USPMarques, Fátima de Lourdes dos Santos NunesNarciso, Everton Note2013-10-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100131/tde-25112014-160734/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-25112014-160734Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR
Test Case Selection For Image Processing Systems Using CBIR Concepts.
title Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR
spellingShingle Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR
Narciso, Everton Note
CBIR
CBIR
Image processing systems
Seleção de casos de teste
Sistemas de processamento de imagens
Test case selection
title_short Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR
title_full Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR
title_fullStr Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR
title_full_unstemmed Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR
title_sort Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR
author Narciso, Everton Note
author_facet Narciso, Everton Note
author_role author
dc.contributor.none.fl_str_mv Marques, Fátima de Lourdes dos Santos Nunes
dc.contributor.author.fl_str_mv Narciso, Everton Note
dc.subject.por.fl_str_mv CBIR
CBIR
Image processing systems
Seleção de casos de teste
Sistemas de processamento de imagens
Test case selection
topic CBIR
CBIR
Image processing systems
Seleção de casos de teste
Sistemas de processamento de imagens
Test case selection
description Os sistemas de processamento de imagens exercem um papel importante no que tange à emulação da visão humana, pois grande parte das informações que as pessoas obtêm do mundo real ocorre por meio de imagens. Desenvolver tais sistemas é uma tarefa complexa e que requer testes rigorosos para garantir a sua confiabilidade. Neste cenário, a seleção de casos de teste é fundamental, pois ajuda a eliminar os dados de teste redundantes e desnecessários enquanto procura manter altas taxas de detecção de erros. Na literatura há várias abordagens para seleção de casos de teste com foco em sistemas de entradas/saídas alfanuméricas, mas a seleção voltada a sistemas complexos (e.g. processamento de imagens) ainda é pouco explorada. Visando a contribuir neste campo de pesquisa, este trabalho apresenta um novo método intitulado Tcs&CbIR, que seleciona e recupera um subconjunto de imagens a partir de um vasto conjunto de teste. Os testes realizados com dois programas de processamento de imagens mostram que a nova abordagem pode superar a seleção aleatória pois, no contexto de avaliação apresentado, a quantidade de casos de teste necessária para revelar a presença de erros foi reduzida em até 87%. Os resultados obtidos revelam, também, o potencial da utilização de CBIR para abstração de informações, a importância da definição de extratores de características adequados e a influência que as funções de similaridade podem exercer na seleção de casos de teste.
publishDate 2013
dc.date.none.fl_str_mv 2013-10-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/100/100131/tde-25112014-160734/
url http://www.teses.usp.br/teses/disponiveis/100/100131/tde-25112014-160734/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257346355494912