O problema de Scarborough-Stone
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042018-162455/ |
Resumo: | O problema de Scarborough-Stone consiste em perguntar se o produto de espaços topológicos sequencialmente compactos precisa ser enumeravelmente compacto. Nesse trabalho estudamos alguns resultados que surgiram tentando resolver tal problema. Começamos com uma resposta negativa em ZFC usando espaços T2 e depois especificamos melhor condições sobre os axiomas de separação envolvendo os espaços do produto. Veremos respostas positivas envolvendo alguns axiomas de separação mais fortes como T6 (usando MA e a negação de CH) e T5 (usando o PFA). Além disso construímos mais respostas negativas usando construções como a Reta de Ostaszewski, espaços de Franklin-Rajagopalan e estruturas envolvendo álgebras Booleanas. |
id |
USP_b97af5460ef2ba2ac341180d8e7b154f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26042018-162455 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
O problema de Scarborough-StoneThe Scarborough-Stone problemCompacidadeCompactnessPequenos cardinaisProblema de Scarborough-StoneScarborough-Stone problemSmall cardinalsO problema de Scarborough-Stone consiste em perguntar se o produto de espaços topológicos sequencialmente compactos precisa ser enumeravelmente compacto. Nesse trabalho estudamos alguns resultados que surgiram tentando resolver tal problema. Começamos com uma resposta negativa em ZFC usando espaços T2 e depois especificamos melhor condições sobre os axiomas de separação envolvendo os espaços do produto. Veremos respostas positivas envolvendo alguns axiomas de separação mais fortes como T6 (usando MA e a negação de CH) e T5 (usando o PFA). Além disso construímos mais respostas negativas usando construções como a Reta de Ostaszewski, espaços de Franklin-Rajagopalan e estruturas envolvendo álgebras Booleanas.The Scarborough-Stone problem asks if every product of sequentially compact spaces must be a countably compact space. In this work we study some results that have arisen in attempt to solve this problem. We start our results with a negative answer in ZFC using T2 spaces and specify our conditions about the separability axioms of the spaces of the product. We will see positive answers assuming stronger separability axioms like T6 (using MA and the negation of CH) and T5 (using the PFA). We also construct more negative answers using constructions like the Ostaszewski line, Franklin-Rajagopalan spaces and structures involving Boolean algebras.Biblioteca Digitais de Teses e Dissertações da USPJunqueira, Lucia RenatoCarvalho, Rodrigo Rey2018-03-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042018-162455/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-10T00:06:19Zoai:teses.usp.br:tde-26042018-162455Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-10T00:06:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
O problema de Scarborough-Stone The Scarborough-Stone problem |
title |
O problema de Scarborough-Stone |
spellingShingle |
O problema de Scarborough-Stone Carvalho, Rodrigo Rey Compacidade Compactness Pequenos cardinais Problema de Scarborough-Stone Scarborough-Stone problem Small cardinals |
title_short |
O problema de Scarborough-Stone |
title_full |
O problema de Scarborough-Stone |
title_fullStr |
O problema de Scarborough-Stone |
title_full_unstemmed |
O problema de Scarborough-Stone |
title_sort |
O problema de Scarborough-Stone |
author |
Carvalho, Rodrigo Rey |
author_facet |
Carvalho, Rodrigo Rey |
author_role |
author |
dc.contributor.none.fl_str_mv |
Junqueira, Lucia Renato |
dc.contributor.author.fl_str_mv |
Carvalho, Rodrigo Rey |
dc.subject.por.fl_str_mv |
Compacidade Compactness Pequenos cardinais Problema de Scarborough-Stone Scarborough-Stone problem Small cardinals |
topic |
Compacidade Compactness Pequenos cardinais Problema de Scarborough-Stone Scarborough-Stone problem Small cardinals |
description |
O problema de Scarborough-Stone consiste em perguntar se o produto de espaços topológicos sequencialmente compactos precisa ser enumeravelmente compacto. Nesse trabalho estudamos alguns resultados que surgiram tentando resolver tal problema. Começamos com uma resposta negativa em ZFC usando espaços T2 e depois especificamos melhor condições sobre os axiomas de separação envolvendo os espaços do produto. Veremos respostas positivas envolvendo alguns axiomas de separação mais fortes como T6 (usando MA e a negação de CH) e T5 (usando o PFA). Além disso construímos mais respostas negativas usando construções como a Reta de Ostaszewski, espaços de Franklin-Rajagopalan e estruturas envolvendo álgebras Booleanas. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042018-162455/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042018-162455/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257356509904896 |