Sobre folheações Finslerianas singulares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-14122017-130959/ |
Resumo: | Nesta tese foi introduzido o conceito de folheação Finsleriana singular, que generaliza ação Finsleriana, submersão Finsler e folheação Finsleriana. O primeiro resultado desta tese afirma que qualquer folheação Finsleriana singular sobre uma variedade Randers com data (h,W) é folheação Riemanniana singular com respeito a h e W é um campo folheado. Para obter este resultado provou-se um teorema de redução ao slice, que permite relacionar uma folheação Finsleriana singular com uma folheação Finsleriana singular em um espaço de Minkowski. O terceiro resultado garante a equifocalidade para as fibras regulares de uma submersão singular analítica que na parte regular é uma submersão Finsleriana. No transcurso do trabalho verificou-se propriedades relevantes das folheações Finslerianas singulares e a existência de vizinhanças tubulares Finslerianas, uma propriedade básica que não estava escrita na literatura. |
id |
USP_bf339022ef39035afe70d58bf9465c56 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14122017-130959 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Sobre folheações Finslerianas singularesOn singular Finsler foliationEspaços RandersFolheação Finsleriana singularRanders spacesSingular Finsler foliationNesta tese foi introduzido o conceito de folheação Finsleriana singular, que generaliza ação Finsleriana, submersão Finsler e folheação Finsleriana. O primeiro resultado desta tese afirma que qualquer folheação Finsleriana singular sobre uma variedade Randers com data (h,W) é folheação Riemanniana singular com respeito a h e W é um campo folheado. Para obter este resultado provou-se um teorema de redução ao slice, que permite relacionar uma folheação Finsleriana singular com uma folheação Finsleriana singular em um espaço de Minkowski. O terceiro resultado garante a equifocalidade para as fibras regulares de uma submersão singular analítica que na parte regular é uma submersão Finsleriana. No transcurso do trabalho verificou-se propriedades relevantes das folheações Finslerianas singulares e a existência de vizinhanças tubulares Finslerianas, uma propriedade básica que não estava escrita na literatura.In this thesis we introduce the concept of singular Finsler foliation, which generalizes the concepts of Finsler actions, Finsler submersions and Finsler foliations. In the first theorem we show that if F is a singular Finsler foliation on a Randers manifold (M,Z) with Zermelo data (h,W), then F is a singular Riemannian foliation on the Riemannian manifold (M, h). In order to prove this theorem we present in the second theorem a slice reduction that relates local singular Finsler foliations on Finsler manifolds with singular Finsler foliations on Minkowski spaces. Finally in the third result we prove the equifocality of the fibers of an analytic singular submersion that is a Finsler submersion in the regular part. Along the work we stress relevant properties on singular Finsler foliations and we also remark the existence of tubular neigborhoods in Finsler geometry, a basic result that we did not find properly written in the literature.Biblioteca Digitais de Teses e Dissertações da USPSilva, Marcos Martins Alexandrino daVictoria, Miguel Angel JavaloyesAlves, Benigno Oliveira2017-11-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-14122017-130959/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-14122017-130959Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Sobre folheações Finslerianas singulares On singular Finsler foliation |
title |
Sobre folheações Finslerianas singulares |
spellingShingle |
Sobre folheações Finslerianas singulares Alves, Benigno Oliveira Espaços Randers Folheação Finsleriana singular Randers spaces Singular Finsler foliation |
title_short |
Sobre folheações Finslerianas singulares |
title_full |
Sobre folheações Finslerianas singulares |
title_fullStr |
Sobre folheações Finslerianas singulares |
title_full_unstemmed |
Sobre folheações Finslerianas singulares |
title_sort |
Sobre folheações Finslerianas singulares |
author |
Alves, Benigno Oliveira |
author_facet |
Alves, Benigno Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Marcos Martins Alexandrino da Victoria, Miguel Angel Javaloyes |
dc.contributor.author.fl_str_mv |
Alves, Benigno Oliveira |
dc.subject.por.fl_str_mv |
Espaços Randers Folheação Finsleriana singular Randers spaces Singular Finsler foliation |
topic |
Espaços Randers Folheação Finsleriana singular Randers spaces Singular Finsler foliation |
description |
Nesta tese foi introduzido o conceito de folheação Finsleriana singular, que generaliza ação Finsleriana, submersão Finsler e folheação Finsleriana. O primeiro resultado desta tese afirma que qualquer folheação Finsleriana singular sobre uma variedade Randers com data (h,W) é folheação Riemanniana singular com respeito a h e W é um campo folheado. Para obter este resultado provou-se um teorema de redução ao slice, que permite relacionar uma folheação Finsleriana singular com uma folheação Finsleriana singular em um espaço de Minkowski. O terceiro resultado garante a equifocalidade para as fibras regulares de uma submersão singular analítica que na parte regular é uma submersão Finsleriana. No transcurso do trabalho verificou-se propriedades relevantes das folheações Finslerianas singulares e a existência de vizinhanças tubulares Finslerianas, uma propriedade básica que não estava escrita na literatura. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-14122017-130959/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-14122017-130959/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256979177734144 |