Folheações rimeannianas e folheações duais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26062014-114617/ |
Resumo: | Uma folheação Riemanniana singular em M, variedade Riemanniana completa, é uma folheação singular tal que as folhas são localmente equidistantes. Existe uma folheação singular, chamada de folheação dual a folheação Riemanniana dada, cuja folha passando por p é o conjunto dos pontos em M que são alcançados por alguma geodésica horizontal quebrada partindo de p. Se M possui curvatura seccional positiva, então a folheação dual possui apenas uma folha. Se a curvatura seccional de M é não-negativa e M não coincidi com alguma folha dual, então o fibrado normal de qualquer geodésica horizontal quebrada é gerado por uma família de campos de Jacobi paralelos. Ambos os resultados são conhecidos com Teorema de Dualização. Uma aplicação destes resultados é a prova da suavidade da projeção métrica na alma. Todos estes resultados são devidos a Wilking. O objetivo desta dissertação de mestrado é discutir tais resultados de Wilking, baseado no trabalho do mesmo e em uma abordagem feita por Gromoll e Walschap. |
id |
USP_a5295585350bab1d1c84e8d19036e1fe |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26062014-114617 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Folheações rimeannianas e folheações duaisSingular Rimannian foliation and dual foliationDual foliationDuality theoremFolheação dualFolheação riemanniana singularSingular Riemannian foliationTeorema de dualizaçãoUma folheação Riemanniana singular em M, variedade Riemanniana completa, é uma folheação singular tal que as folhas são localmente equidistantes. Existe uma folheação singular, chamada de folheação dual a folheação Riemanniana dada, cuja folha passando por p é o conjunto dos pontos em M que são alcançados por alguma geodésica horizontal quebrada partindo de p. Se M possui curvatura seccional positiva, então a folheação dual possui apenas uma folha. Se a curvatura seccional de M é não-negativa e M não coincidi com alguma folha dual, então o fibrado normal de qualquer geodésica horizontal quebrada é gerado por uma família de campos de Jacobi paralelos. Ambos os resultados são conhecidos com Teorema de Dualização. Uma aplicação destes resultados é a prova da suavidade da projeção métrica na alma. Todos estes resultados são devidos a Wilking. O objetivo desta dissertação de mestrado é discutir tais resultados de Wilking, baseado no trabalho do mesmo e em uma abordagem feita por Gromoll e Walschap.Let M be a Riemanniana manifold with nonnegative sectional curvature. A singular Riemannian foliation in M is a singular foliation with locally equidistant leaves. The dual leaf though p is the collection of the all points q in M such that p and q are connected with a piece-wise horizontal geodesic. The partition of M into the dual leaves is a singular foliation called dual foliation. Wilking proved that if the sectional curveture is positive, then the dual foliation consists of a single leaf. In other words, any two points in M can be connected with a piece-wise horizontal geodesic. In order to prove this result Wilking showed that, if M is nonnegatively curved, the normal bundle of a dual leaf along a piecewise horizontal geodesic is gerated for parallel Jacobi field. These results are used in the proof that the projection metric in the soul is smoth.Biblioteca Digitais de Teses e Dissertações da USPSilva, Marcos Martins Alexandrino daAlves, Benigno Oliveira2013-08-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-26062014-114617/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-26062014-114617Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Folheações rimeannianas e folheações duais Singular Rimannian foliation and dual foliation |
title |
Folheações rimeannianas e folheações duais |
spellingShingle |
Folheações rimeannianas e folheações duais Alves, Benigno Oliveira Dual foliation Duality theorem Folheação dual Folheação riemanniana singular Singular Riemannian foliation Teorema de dualização |
title_short |
Folheações rimeannianas e folheações duais |
title_full |
Folheações rimeannianas e folheações duais |
title_fullStr |
Folheações rimeannianas e folheações duais |
title_full_unstemmed |
Folheações rimeannianas e folheações duais |
title_sort |
Folheações rimeannianas e folheações duais |
author |
Alves, Benigno Oliveira |
author_facet |
Alves, Benigno Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Marcos Martins Alexandrino da |
dc.contributor.author.fl_str_mv |
Alves, Benigno Oliveira |
dc.subject.por.fl_str_mv |
Dual foliation Duality theorem Folheação dual Folheação riemanniana singular Singular Riemannian foliation Teorema de dualização |
topic |
Dual foliation Duality theorem Folheação dual Folheação riemanniana singular Singular Riemannian foliation Teorema de dualização |
description |
Uma folheação Riemanniana singular em M, variedade Riemanniana completa, é uma folheação singular tal que as folhas são localmente equidistantes. Existe uma folheação singular, chamada de folheação dual a folheação Riemanniana dada, cuja folha passando por p é o conjunto dos pontos em M que são alcançados por alguma geodésica horizontal quebrada partindo de p. Se M possui curvatura seccional positiva, então a folheação dual possui apenas uma folha. Se a curvatura seccional de M é não-negativa e M não coincidi com alguma folha dual, então o fibrado normal de qualquer geodésica horizontal quebrada é gerado por uma família de campos de Jacobi paralelos. Ambos os resultados são conhecidos com Teorema de Dualização. Uma aplicação destes resultados é a prova da suavidade da projeção métrica na alma. Todos estes resultados são devidos a Wilking. O objetivo desta dissertação de mestrado é discutir tais resultados de Wilking, baseado no trabalho do mesmo e em uma abordagem feita por Gromoll e Walschap. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26062014-114617/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26062014-114617/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257394250252288 |