Chern classes via differential forms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102022-150811/ |
Resumo: | The objective of this dissertation is to present, through differential topology, some of the mathematical foundations to construct the Chern classes on complex vector bundles π: E → M, where M is a differentiable manifold. In this work we cover some preliminary topics of multilinear algebra, general topology, homological algebra and category theory in order to present the necessary background to develop the concepts here present. Next, we discuss the theory of differentiable manifolds needed, such as basic definitions, tangent space, differentiability, orientation and boundary. From the notion of manifolds, we introduce differential forms and their main properties, which allows us to work with integration on differentiable manifolds in a simplified way due to the algebraic properties that the graded space Ω*(M) possesses. Using the theory of differential forms we construct a cohomology theory, called de Rhams Cohomology, which is defined from the vector spaces of differential forms. The cohomology groups are essential in this work, because from them we have the basis to present several of the important results in the thesis such as the Poincaré duality, the Künneth formula and the Leray-Hirsch theorem. Also, they are important for the definition of Euler classes on real vector bundles of rank 2 and, consequently, the definition of the first Chern class on complex line bundles. We then give an overview of the general construction of Chern classes and give some of its properties. Finally, it is important to emphasize the importance of the topological concept of vector bundles in the work, both real and complex, in view of its relevance to define the desired classes. |
id |
USP_c5d8e58ae18b24ff1a61df288be10a1f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18102022-150811 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Chern classes via differential formsClasses de Chern via formas diferenciaisCharacteristic classesClasses característicasCohomologiaCohomologyDifferential formsDifferential manifoldsFibrados vetoriaisFormas diferenciaisVariedades diferenciáveisVector bundlesThe objective of this dissertation is to present, through differential topology, some of the mathematical foundations to construct the Chern classes on complex vector bundles π: E → M, where M is a differentiable manifold. In this work we cover some preliminary topics of multilinear algebra, general topology, homological algebra and category theory in order to present the necessary background to develop the concepts here present. Next, we discuss the theory of differentiable manifolds needed, such as basic definitions, tangent space, differentiability, orientation and boundary. From the notion of manifolds, we introduce differential forms and their main properties, which allows us to work with integration on differentiable manifolds in a simplified way due to the algebraic properties that the graded space Ω*(M) possesses. Using the theory of differential forms we construct a cohomology theory, called de Rhams Cohomology, which is defined from the vector spaces of differential forms. The cohomology groups are essential in this work, because from them we have the basis to present several of the important results in the thesis such as the Poincaré duality, the Künneth formula and the Leray-Hirsch theorem. Also, they are important for the definition of Euler classes on real vector bundles of rank 2 and, consequently, the definition of the first Chern class on complex line bundles. We then give an overview of the general construction of Chern classes and give some of its properties. Finally, it is important to emphasize the importance of the topological concept of vector bundles in the work, both real and complex, in view of its relevance to define the desired classes.O objetivo dessa dissertação é apresentar algumas das bases matemáticas necessárias para a construção das classes de Chern em fibrados vetoriais complexos π : E → M, com M uma variedade diferenciável, a partir da topologia diferencial. No trabalho abordamos alguns tópicos preliminares de álgebra multilinear, topologia geral, álgebra comutativa e teoria de categorias com o fim de apresentar as bases necessárias para desenvolver os conceitos presentes aqui. Em seguida, fazemos uma discussão sobre a teoria de variedades diferenciáveis necessária, como definições básicas, espaço tangente, diferenciabilidade, orientação e fronteira. A partir da noção de variedades, introduzimos as formas diferenciais e suas principais propriedades, que nos permite trabalhar com integração em variedades diferenciáveis de maneira simplificada devido às propriedades algébricas que o espaço graduado Ω*(M) possui. Usando a teoria de formas diferenciais construímos uma teoria de cohomologia, chamada Cohomologia de DeRham, que é feita a partir dos espaços vetoriais das formas diferenciais. Os grupos de cohomologia são essenciais no presente trabalho, pois a partir deles temos as bases para apresentar diversos dos resultados importantes na tese como a Dualidade de Poincaré, a Fórmula de Künneth e o Teorema de Leray-Hirsch. Além disso, as classes de cohomologia são usadas para definir a classe de Euler nos fibrados vetoriais reais de rank 2 e, por consequência, a definição da primeira classe de Chern nos fibrados vetoriais complexos de rank 1. Depois, apresentamos de forma simplicada a construção geral das classes de Chern e algumas de suas propriedades. Por fim, é importante ressaltar a importância do conceito topológico de fibrados vetoriais no trabalho, tanto reais como complexos, tendo em vista sua relevância para definir as classes desejadas.Biblioteca Digitais de Teses e Dissertações da USPGrulha Junior, Nivaldo de GóesTezôto, Ivan Tagliaferro de Oliveira2022-08-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102022-150811/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-10-18T17:58:34Zoai:teses.usp.br:tde-18102022-150811Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-10-18T17:58:34Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Chern classes via differential forms Classes de Chern via formas diferenciais |
title |
Chern classes via differential forms |
spellingShingle |
Chern classes via differential forms Tezôto, Ivan Tagliaferro de Oliveira Characteristic classes Classes características Cohomologia Cohomology Differential forms Differential manifolds Fibrados vetoriais Formas diferenciais Variedades diferenciáveis Vector bundles |
title_short |
Chern classes via differential forms |
title_full |
Chern classes via differential forms |
title_fullStr |
Chern classes via differential forms |
title_full_unstemmed |
Chern classes via differential forms |
title_sort |
Chern classes via differential forms |
author |
Tezôto, Ivan Tagliaferro de Oliveira |
author_facet |
Tezôto, Ivan Tagliaferro de Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Grulha Junior, Nivaldo de Góes |
dc.contributor.author.fl_str_mv |
Tezôto, Ivan Tagliaferro de Oliveira |
dc.subject.por.fl_str_mv |
Characteristic classes Classes características Cohomologia Cohomology Differential forms Differential manifolds Fibrados vetoriais Formas diferenciais Variedades diferenciáveis Vector bundles |
topic |
Characteristic classes Classes características Cohomologia Cohomology Differential forms Differential manifolds Fibrados vetoriais Formas diferenciais Variedades diferenciáveis Vector bundles |
description |
The objective of this dissertation is to present, through differential topology, some of the mathematical foundations to construct the Chern classes on complex vector bundles π: E → M, where M is a differentiable manifold. In this work we cover some preliminary topics of multilinear algebra, general topology, homological algebra and category theory in order to present the necessary background to develop the concepts here present. Next, we discuss the theory of differentiable manifolds needed, such as basic definitions, tangent space, differentiability, orientation and boundary. From the notion of manifolds, we introduce differential forms and their main properties, which allows us to work with integration on differentiable manifolds in a simplified way due to the algebraic properties that the graded space Ω*(M) possesses. Using the theory of differential forms we construct a cohomology theory, called de Rhams Cohomology, which is defined from the vector spaces of differential forms. The cohomology groups are essential in this work, because from them we have the basis to present several of the important results in the thesis such as the Poincaré duality, the Künneth formula and the Leray-Hirsch theorem. Also, they are important for the definition of Euler classes on real vector bundles of rank 2 and, consequently, the definition of the first Chern class on complex line bundles. We then give an overview of the general construction of Chern classes and give some of its properties. Finally, it is important to emphasize the importance of the topological concept of vector bundles in the work, both real and complex, in view of its relevance to define the desired classes. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102022-150811/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102022-150811/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257114923237376 |