Aplicação de aprendizado de máquina na detecção de fraudes públicas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/12/12139/tde-10022020-174317/ |
Resumo: | Nos últimos anos, os governos mundiais vêm participando de esforços conjuntos para aumentar a disponibilidade dos dados governamentais para seus cidadãos, e o resultado disso, no Brasil, foi a criação do Portal Brasileiro de Dados Abertos. Com mais dados disponíveis ao cidadão comum, várias análises que não são feitas pelo governo, em razão da falta de conhecimento ou de interesse, tornam-se possíveis, como, por exemplo, a identificação de fraudes em licitações públicas. Uma forma de identificar os padrões existentes nessas fraudes é o uso de aprendizado de máquina. Atualmente, existem softwares como R e Python que permitem o uso de diversas técnicas de aprendizado de máquina já implementadas. Esses softwares, devido à sua grande capacidade de processamento, também, podem auxiliar em problemas com dados desbalanceados, em que a ocorrência do evento que está sendo estudado é muito rara, como é o caso de fraudes. Assim, um exemplo desse tipo de problema e que é alvo do estudo desta dissertação é a detecção de fraudes em sistemas públicos por meio da descoberta de contratos que pertencem a empresas inidôneas. Tal desafio pode potencializar-se com grandes volumes de dados, visto que podem tornar o processamento dessas bases mais complexo. Assim, esta dissertação visa contribuir para a resolução desse problema propondo avaliar metodologias e técnicas de aprendizado de máquina que apresentam resultados satisfatórios nesse cenário. |
id |
USP_c91d4748c16ce33fe8f6a6949eaa4749 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10022020-174317 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aplicação de aprendizado de máquina na detecção de fraudes públicasMachine learning application in public fraudsAprendizado de máquinaArtificial intelligenceBiddingsBig dataBig dataDados desbalanceadosEventos rarosFraudes públicasImbalanced datasetsInteligência artificialLicitaçõesMachine learningMachine learningPublic fraudsRare eventsNos últimos anos, os governos mundiais vêm participando de esforços conjuntos para aumentar a disponibilidade dos dados governamentais para seus cidadãos, e o resultado disso, no Brasil, foi a criação do Portal Brasileiro de Dados Abertos. Com mais dados disponíveis ao cidadão comum, várias análises que não são feitas pelo governo, em razão da falta de conhecimento ou de interesse, tornam-se possíveis, como, por exemplo, a identificação de fraudes em licitações públicas. Uma forma de identificar os padrões existentes nessas fraudes é o uso de aprendizado de máquina. Atualmente, existem softwares como R e Python que permitem o uso de diversas técnicas de aprendizado de máquina já implementadas. Esses softwares, devido à sua grande capacidade de processamento, também, podem auxiliar em problemas com dados desbalanceados, em que a ocorrência do evento que está sendo estudado é muito rara, como é o caso de fraudes. Assim, um exemplo desse tipo de problema e que é alvo do estudo desta dissertação é a detecção de fraudes em sistemas públicos por meio da descoberta de contratos que pertencem a empresas inidôneas. Tal desafio pode potencializar-se com grandes volumes de dados, visto que podem tornar o processamento dessas bases mais complexo. Assim, esta dissertação visa contribuir para a resolução desse problema propondo avaliar metodologias e técnicas de aprendizado de máquina que apresentam resultados satisfatórios nesse cenário.In recent years, world governments have been participating in joint efforts to increase the availability of government data for their citizens, such as the creation of the Brazilian Open Data Portal. With more data available to the average citizen, several analyzes become possible, for example, the identification of fraud in public bids. One way to identify patterns in these scams is to use machine learning. These techniques can aid in the analysis of problems with unbalanced data, where the occurrence of the event being studied is very rare, as is the case of frauds. An example of this type of problem that is the subject of this dissertation is the detection of fraud in public systems discovering public contracts belonging to untrusted companies. Thus, this work uses public data for the identification of frauds to the public patrimonyBiblioteca Digitais de Teses e Dissertações da USPMontini, Alessandra de ÁvilaLopes, Marco Antonio2019-11-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/12/12139/tde-10022020-174317/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-02-18T00:11:02Zoai:teses.usp.br:tde-10022020-174317Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-18T00:11:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aplicação de aprendizado de máquina na detecção de fraudes públicas Machine learning application in public frauds |
title |
Aplicação de aprendizado de máquina na detecção de fraudes públicas |
spellingShingle |
Aplicação de aprendizado de máquina na detecção de fraudes públicas Lopes, Marco Antonio Aprendizado de máquina Artificial intelligence Biddings Big data Big data Dados desbalanceados Eventos raros Fraudes públicas Imbalanced datasets Inteligência artificial Licitações Machine learning Machine learning Public frauds Rare events |
title_short |
Aplicação de aprendizado de máquina na detecção de fraudes públicas |
title_full |
Aplicação de aprendizado de máquina na detecção de fraudes públicas |
title_fullStr |
Aplicação de aprendizado de máquina na detecção de fraudes públicas |
title_full_unstemmed |
Aplicação de aprendizado de máquina na detecção de fraudes públicas |
title_sort |
Aplicação de aprendizado de máquina na detecção de fraudes públicas |
author |
Lopes, Marco Antonio |
author_facet |
Lopes, Marco Antonio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Montini, Alessandra de Ávila |
dc.contributor.author.fl_str_mv |
Lopes, Marco Antonio |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Artificial intelligence Biddings Big data Big data Dados desbalanceados Eventos raros Fraudes públicas Imbalanced datasets Inteligência artificial Licitações Machine learning Machine learning Public frauds Rare events |
topic |
Aprendizado de máquina Artificial intelligence Biddings Big data Big data Dados desbalanceados Eventos raros Fraudes públicas Imbalanced datasets Inteligência artificial Licitações Machine learning Machine learning Public frauds Rare events |
description |
Nos últimos anos, os governos mundiais vêm participando de esforços conjuntos para aumentar a disponibilidade dos dados governamentais para seus cidadãos, e o resultado disso, no Brasil, foi a criação do Portal Brasileiro de Dados Abertos. Com mais dados disponíveis ao cidadão comum, várias análises que não são feitas pelo governo, em razão da falta de conhecimento ou de interesse, tornam-se possíveis, como, por exemplo, a identificação de fraudes em licitações públicas. Uma forma de identificar os padrões existentes nessas fraudes é o uso de aprendizado de máquina. Atualmente, existem softwares como R e Python que permitem o uso de diversas técnicas de aprendizado de máquina já implementadas. Esses softwares, devido à sua grande capacidade de processamento, também, podem auxiliar em problemas com dados desbalanceados, em que a ocorrência do evento que está sendo estudado é muito rara, como é o caso de fraudes. Assim, um exemplo desse tipo de problema e que é alvo do estudo desta dissertação é a detecção de fraudes em sistemas públicos por meio da descoberta de contratos que pertencem a empresas inidôneas. Tal desafio pode potencializar-se com grandes volumes de dados, visto que podem tornar o processamento dessas bases mais complexo. Assim, esta dissertação visa contribuir para a resolução desse problema propondo avaliar metodologias e técnicas de aprendizado de máquina que apresentam resultados satisfatórios nesse cenário. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/12/12139/tde-10022020-174317/ |
url |
http://www.teses.usp.br/teses/disponiveis/12/12139/tde-10022020-174317/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256903449575424 |