Finding maxima of Gaussian Sum-Product Networks

Detalhes bibliográficos
Autor(a) principal: Madeira, Tiago
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092023-103415/
Resumo: This thesis is about finding maxima of Sum-Product Networks (SPNs). SPNs are expressive statistical deep models that efficiently represent complex probability distributions. They encode context-specific independence among random variables and enable exact marginal and conditional probability inference in linear time. The research explores Gaussian SPNs (GSPNs), which are continuous SPNs with Gaussian distributions at their leaves. GSPNs provide compact representations of Gaussian Mixture Models (GMMs) with many components. The relationship between GSPNs and GMMs has been largely unexplored in the literature, particularly regarding mode-finding techniques. The problem of finding modes in Gaussian mixtures is challenging, and existing techniques involve hill-climbing algorithms. However, there is limited research discussing modes in the context of SPNs. The objective of this work is to investigate and establish a framework for identifying modes in GSPNs. This is accomplished by developing an algorithm that employs an EM-style fixed-point iteration method for mode finding in GSPNs. The algorithm is presented in detail, accompanied by a formal proof of its correctness. Two applications for it are discussed: Maximum-A-Posteriori inference and modal clustering. Some experimental results are provided to evaluate the effectiveness of the proposed approach.
id USP_c9fa7b70fc3a52293b3e814066f5cbd7
oai_identifier_str oai:teses.usp.br:tde-18092023-103415
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Finding maxima of Gaussian Sum-Product NetworksEncontrando máximos de redes Soma-Produto GaussianasAprendizagem de máquinaBusca de modasGaussian mixture modelsMachine learningMode findingModelos de misturas GaussianasModelos probabilísticosProbabilistic modelsRedes Soma-ProdutoSum-Product NetworksThis thesis is about finding maxima of Sum-Product Networks (SPNs). SPNs are expressive statistical deep models that efficiently represent complex probability distributions. They encode context-specific independence among random variables and enable exact marginal and conditional probability inference in linear time. The research explores Gaussian SPNs (GSPNs), which are continuous SPNs with Gaussian distributions at their leaves. GSPNs provide compact representations of Gaussian Mixture Models (GMMs) with many components. The relationship between GSPNs and GMMs has been largely unexplored in the literature, particularly regarding mode-finding techniques. The problem of finding modes in Gaussian mixtures is challenging, and existing techniques involve hill-climbing algorithms. However, there is limited research discussing modes in the context of SPNs. The objective of this work is to investigate and establish a framework for identifying modes in GSPNs. This is accomplished by developing an algorithm that employs an EM-style fixed-point iteration method for mode finding in GSPNs. The algorithm is presented in detail, accompanied by a formal proof of its correctness. Two applications for it are discussed: Maximum-A-Posteriori inference and modal clustering. Some experimental results are provided to evaluate the effectiveness of the proposed approach.Esta dissertação é sobre busca de máximos de Redes Soma-Produto (SPNs, do inglês Sum-Product Networks). As SPNs são modelos estatísticos profundos expressivos que representam eficientemente distribuições de probabilidade complexas. Elas codificam independência contextual específica entre variáveis aleatórias e permitem inferência exata de probabilidade marginal e condicional em tempo linear. A pesquisa explora as SPNs Gaussianas (GSPNs), que são SPNs contínuas com distribuições Gaussianas em suas folhas. As GSPNs fornecem representações compactas de Modelos de Misturas Gaussianas (GMMs) com muitos componentes. A relação entre GSPNs e GMMs tem sido pouco explorada na literatura, especialmente no que diz respeito a técnicas de busca de modas. O problema de encontrar modas em misturas Gaussianas é desafiador e as técnicas existentes envolvem algoritmos de escalada. No entanto, há pouca pesquisa discutindo modas no contexto de SPNs. O objetivo deste trabalho é investigar e estabelecer uma abordagem para encontrar modas em GSPNs. Isso é alcançado através do desenvolvimento de um algoritmo que utiliza um método de iteração de ponto fixo no estilo EM (Expectativa-Maximização) para encontrar modas em GSPNs. O algoritmo é apresentado em detalhes, acompanhado de uma prova formal de sua corretude. Duas aplicações para ele são discutidas: inferência de Máximo-A-Posteriori e clusterização modal. Alguns resultados experimentais são fornecidos para avaliar a eficácia da abordagem proposta.Biblioteca Digitais de Teses e Dissertações da USPMauá, Denis DerataniMadeira, Tiago2023-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092023-103415/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-27T21:47:03Zoai:teses.usp.br:tde-18092023-103415Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-27T21:47:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Finding maxima of Gaussian Sum-Product Networks
Encontrando máximos de redes Soma-Produto Gaussianas
title Finding maxima of Gaussian Sum-Product Networks
spellingShingle Finding maxima of Gaussian Sum-Product Networks
Madeira, Tiago
Aprendizagem de máquina
Busca de modas
Gaussian mixture models
Machine learning
Mode finding
Modelos de misturas Gaussianas
Modelos probabilísticos
Probabilistic models
Redes Soma-Produto
Sum-Product Networks
title_short Finding maxima of Gaussian Sum-Product Networks
title_full Finding maxima of Gaussian Sum-Product Networks
title_fullStr Finding maxima of Gaussian Sum-Product Networks
title_full_unstemmed Finding maxima of Gaussian Sum-Product Networks
title_sort Finding maxima of Gaussian Sum-Product Networks
author Madeira, Tiago
author_facet Madeira, Tiago
author_role author
dc.contributor.none.fl_str_mv Mauá, Denis Deratani
dc.contributor.author.fl_str_mv Madeira, Tiago
dc.subject.por.fl_str_mv Aprendizagem de máquina
Busca de modas
Gaussian mixture models
Machine learning
Mode finding
Modelos de misturas Gaussianas
Modelos probabilísticos
Probabilistic models
Redes Soma-Produto
Sum-Product Networks
topic Aprendizagem de máquina
Busca de modas
Gaussian mixture models
Machine learning
Mode finding
Modelos de misturas Gaussianas
Modelos probabilísticos
Probabilistic models
Redes Soma-Produto
Sum-Product Networks
description This thesis is about finding maxima of Sum-Product Networks (SPNs). SPNs are expressive statistical deep models that efficiently represent complex probability distributions. They encode context-specific independence among random variables and enable exact marginal and conditional probability inference in linear time. The research explores Gaussian SPNs (GSPNs), which are continuous SPNs with Gaussian distributions at their leaves. GSPNs provide compact representations of Gaussian Mixture Models (GMMs) with many components. The relationship between GSPNs and GMMs has been largely unexplored in the literature, particularly regarding mode-finding techniques. The problem of finding modes in Gaussian mixtures is challenging, and existing techniques involve hill-climbing algorithms. However, there is limited research discussing modes in the context of SPNs. The objective of this work is to investigate and establish a framework for identifying modes in GSPNs. This is accomplished by developing an algorithm that employs an EM-style fixed-point iteration method for mode finding in GSPNs. The algorithm is presented in detail, accompanied by a formal proof of its correctness. Two applications for it are discussed: Maximum-A-Posteriori inference and modal clustering. Some experimental results are provided to evaluate the effectiveness of the proposed approach.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092023-103415/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092023-103415/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257112653070336