Finding maxima of Gaussian Sum-Product Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092023-103415/ |
Resumo: | This thesis is about finding maxima of Sum-Product Networks (SPNs). SPNs are expressive statistical deep models that efficiently represent complex probability distributions. They encode context-specific independence among random variables and enable exact marginal and conditional probability inference in linear time. The research explores Gaussian SPNs (GSPNs), which are continuous SPNs with Gaussian distributions at their leaves. GSPNs provide compact representations of Gaussian Mixture Models (GMMs) with many components. The relationship between GSPNs and GMMs has been largely unexplored in the literature, particularly regarding mode-finding techniques. The problem of finding modes in Gaussian mixtures is challenging, and existing techniques involve hill-climbing algorithms. However, there is limited research discussing modes in the context of SPNs. The objective of this work is to investigate and establish a framework for identifying modes in GSPNs. This is accomplished by developing an algorithm that employs an EM-style fixed-point iteration method for mode finding in GSPNs. The algorithm is presented in detail, accompanied by a formal proof of its correctness. Two applications for it are discussed: Maximum-A-Posteriori inference and modal clustering. Some experimental results are provided to evaluate the effectiveness of the proposed approach. |
id |
USP_c9fa7b70fc3a52293b3e814066f5cbd7 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18092023-103415 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Finding maxima of Gaussian Sum-Product NetworksEncontrando máximos de redes Soma-Produto GaussianasAprendizagem de máquinaBusca de modasGaussian mixture modelsMachine learningMode findingModelos de misturas GaussianasModelos probabilísticosProbabilistic modelsRedes Soma-ProdutoSum-Product NetworksThis thesis is about finding maxima of Sum-Product Networks (SPNs). SPNs are expressive statistical deep models that efficiently represent complex probability distributions. They encode context-specific independence among random variables and enable exact marginal and conditional probability inference in linear time. The research explores Gaussian SPNs (GSPNs), which are continuous SPNs with Gaussian distributions at their leaves. GSPNs provide compact representations of Gaussian Mixture Models (GMMs) with many components. The relationship between GSPNs and GMMs has been largely unexplored in the literature, particularly regarding mode-finding techniques. The problem of finding modes in Gaussian mixtures is challenging, and existing techniques involve hill-climbing algorithms. However, there is limited research discussing modes in the context of SPNs. The objective of this work is to investigate and establish a framework for identifying modes in GSPNs. This is accomplished by developing an algorithm that employs an EM-style fixed-point iteration method for mode finding in GSPNs. The algorithm is presented in detail, accompanied by a formal proof of its correctness. Two applications for it are discussed: Maximum-A-Posteriori inference and modal clustering. Some experimental results are provided to evaluate the effectiveness of the proposed approach.Esta dissertação é sobre busca de máximos de Redes Soma-Produto (SPNs, do inglês Sum-Product Networks). As SPNs são modelos estatísticos profundos expressivos que representam eficientemente distribuições de probabilidade complexas. Elas codificam independência contextual específica entre variáveis aleatórias e permitem inferência exata de probabilidade marginal e condicional em tempo linear. A pesquisa explora as SPNs Gaussianas (GSPNs), que são SPNs contínuas com distribuições Gaussianas em suas folhas. As GSPNs fornecem representações compactas de Modelos de Misturas Gaussianas (GMMs) com muitos componentes. A relação entre GSPNs e GMMs tem sido pouco explorada na literatura, especialmente no que diz respeito a técnicas de busca de modas. O problema de encontrar modas em misturas Gaussianas é desafiador e as técnicas existentes envolvem algoritmos de escalada. No entanto, há pouca pesquisa discutindo modas no contexto de SPNs. O objetivo deste trabalho é investigar e estabelecer uma abordagem para encontrar modas em GSPNs. Isso é alcançado através do desenvolvimento de um algoritmo que utiliza um método de iteração de ponto fixo no estilo EM (Expectativa-Maximização) para encontrar modas em GSPNs. O algoritmo é apresentado em detalhes, acompanhado de uma prova formal de sua corretude. Duas aplicações para ele são discutidas: inferência de Máximo-A-Posteriori e clusterização modal. Alguns resultados experimentais são fornecidos para avaliar a eficácia da abordagem proposta.Biblioteca Digitais de Teses e Dissertações da USPMauá, Denis DerataniMadeira, Tiago2023-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092023-103415/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-27T21:47:03Zoai:teses.usp.br:tde-18092023-103415Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-27T21:47:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Finding maxima of Gaussian Sum-Product Networks Encontrando máximos de redes Soma-Produto Gaussianas |
title |
Finding maxima of Gaussian Sum-Product Networks |
spellingShingle |
Finding maxima of Gaussian Sum-Product Networks Madeira, Tiago Aprendizagem de máquina Busca de modas Gaussian mixture models Machine learning Mode finding Modelos de misturas Gaussianas Modelos probabilísticos Probabilistic models Redes Soma-Produto Sum-Product Networks |
title_short |
Finding maxima of Gaussian Sum-Product Networks |
title_full |
Finding maxima of Gaussian Sum-Product Networks |
title_fullStr |
Finding maxima of Gaussian Sum-Product Networks |
title_full_unstemmed |
Finding maxima of Gaussian Sum-Product Networks |
title_sort |
Finding maxima of Gaussian Sum-Product Networks |
author |
Madeira, Tiago |
author_facet |
Madeira, Tiago |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mauá, Denis Deratani |
dc.contributor.author.fl_str_mv |
Madeira, Tiago |
dc.subject.por.fl_str_mv |
Aprendizagem de máquina Busca de modas Gaussian mixture models Machine learning Mode finding Modelos de misturas Gaussianas Modelos probabilísticos Probabilistic models Redes Soma-Produto Sum-Product Networks |
topic |
Aprendizagem de máquina Busca de modas Gaussian mixture models Machine learning Mode finding Modelos de misturas Gaussianas Modelos probabilísticos Probabilistic models Redes Soma-Produto Sum-Product Networks |
description |
This thesis is about finding maxima of Sum-Product Networks (SPNs). SPNs are expressive statistical deep models that efficiently represent complex probability distributions. They encode context-specific independence among random variables and enable exact marginal and conditional probability inference in linear time. The research explores Gaussian SPNs (GSPNs), which are continuous SPNs with Gaussian distributions at their leaves. GSPNs provide compact representations of Gaussian Mixture Models (GMMs) with many components. The relationship between GSPNs and GMMs has been largely unexplored in the literature, particularly regarding mode-finding techniques. The problem of finding modes in Gaussian mixtures is challenging, and existing techniques involve hill-climbing algorithms. However, there is limited research discussing modes in the context of SPNs. The objective of this work is to investigate and establish a framework for identifying modes in GSPNs. This is accomplished by developing an algorithm that employs an EM-style fixed-point iteration method for mode finding in GSPNs. The algorithm is presented in detail, accompanied by a formal proof of its correctness. Two applications for it are discussed: Maximum-A-Posteriori inference and modal clustering. Some experimental results are provided to evaluate the effectiveness of the proposed approach. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092023-103415/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092023-103415/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257112653070336 |