Machine learning for intraday returns forecasting in the brazilian stock marketing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/12/12138/tde-10052021-212420/ |
Resumo: | This paper applies different estimation methods, specialized in dealing with high data dimensionality, to make rolling five-minute-ahead return forecasts using high frequency data, 5 minutes. The methods used are ridge, LASSO, elastic net, PCR and PLS. The explanatory variables are only the lagged returns of their own and of all the other stocks on the Ibovespa index. More than just statistical, the economic sense behind these variables is that they can quickly capture the impact of new information about the companies. The aim of this paper is to perform a comprehensive comparison of out-of-sample forecast performance of stock returns among methods. The results show that Ridge Regression produces the best performance among all methods with a significant advantage. To assess the robustness of the results, different portfolios were formed. The returns obtained for the portfolio built with the most volatiles stocks and the portfolio that exploits the predictability of machine learning methods, even under a conservative assumption on transaction cost, suggest that these approaches appear to be promising for traders. |
id |
USP_d0c4561c0c4f5dc1de161b3f59d9a341 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10052021-212420 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Machine learning for intraday returns forecasting in the brazilian stock marketingMachine learning para previsão intraday de retornos no mercado acionário brasileiroElastic netElastic netLassoLassoMachine learningMachine learningPCRPCRPLSPLSRidgeRidgeThis paper applies different estimation methods, specialized in dealing with high data dimensionality, to make rolling five-minute-ahead return forecasts using high frequency data, 5 minutes. The methods used are ridge, LASSO, elastic net, PCR and PLS. The explanatory variables are only the lagged returns of their own and of all the other stocks on the Ibovespa index. More than just statistical, the economic sense behind these variables is that they can quickly capture the impact of new information about the companies. The aim of this paper is to perform a comprehensive comparison of out-of-sample forecast performance of stock returns among methods. The results show that Ridge Regression produces the best performance among all methods with a significant advantage. To assess the robustness of the results, different portfolios were formed. The returns obtained for the portfolio built with the most volatiles stocks and the portfolio that exploits the predictability of machine learning methods, even under a conservative assumption on transaction cost, suggest that these approaches appear to be promising for traders.Esse trabalho aplica diferentes métodos de estimação, especializados em lidar com alta dimensionalidade dos dados, em janelas móveis para realizar previsões de retorno um passo a frente utilizando dados de alta frequência, 5 minutos. Os métodos utilizados são o ridge, LASSO, elastic net, PCR e PLS. As variáveis explicativas são apenas os retornos defasados da própria e de outras ações presentes no índice Ibovespa. Mais que somente estatísticos, o sentido econômico por trás dessas variáveis é que elas tornam possível capturar, de forma rápida, o impacto de novas informações sobre as empresas. O objetivo deste trabalho é realizar uma comparação do desempenho para previsão de retornos fora da amostra entre os métodos citados. Os resultados mostram que o Ridge produz o melhor desempenho entre todos os métodos, com uma vantagem significativa. Para avaliar a robustez dos resultados, foram formadas diferentes carteiras. Os retornos obtidos para o portfólio composto pelas ações mais voláteis e para o portfólio que explora a previsibilidade dos métodos de machine learning, mesmo sob uma premissa conservadora sobre o custo da transação, sugerem que essas abordagens parecem promissoras para serem aplicadas por traders.Biblioteca Digitais de Teses e Dissertações da USPDario, Alan de GenaroAlexandre, Henrique Leone2020-10-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/12/12138/tde-10052021-212420/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-05-25T18:30:02Zoai:teses.usp.br:tde-10052021-212420Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-25T18:30:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Machine learning for intraday returns forecasting in the brazilian stock marketing Machine learning para previsão intraday de retornos no mercado acionário brasileiro |
title |
Machine learning for intraday returns forecasting in the brazilian stock marketing |
spellingShingle |
Machine learning for intraday returns forecasting in the brazilian stock marketing Alexandre, Henrique Leone Elastic net Elastic net Lasso Lasso Machine learning Machine learning PCR PCR PLS PLS Ridge Ridge |
title_short |
Machine learning for intraday returns forecasting in the brazilian stock marketing |
title_full |
Machine learning for intraday returns forecasting in the brazilian stock marketing |
title_fullStr |
Machine learning for intraday returns forecasting in the brazilian stock marketing |
title_full_unstemmed |
Machine learning for intraday returns forecasting in the brazilian stock marketing |
title_sort |
Machine learning for intraday returns forecasting in the brazilian stock marketing |
author |
Alexandre, Henrique Leone |
author_facet |
Alexandre, Henrique Leone |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dario, Alan de Genaro |
dc.contributor.author.fl_str_mv |
Alexandre, Henrique Leone |
dc.subject.por.fl_str_mv |
Elastic net Elastic net Lasso Lasso Machine learning Machine learning PCR PCR PLS PLS Ridge Ridge |
topic |
Elastic net Elastic net Lasso Lasso Machine learning Machine learning PCR PCR PLS PLS Ridge Ridge |
description |
This paper applies different estimation methods, specialized in dealing with high data dimensionality, to make rolling five-minute-ahead return forecasts using high frequency data, 5 minutes. The methods used are ridge, LASSO, elastic net, PCR and PLS. The explanatory variables are only the lagged returns of their own and of all the other stocks on the Ibovespa index. More than just statistical, the economic sense behind these variables is that they can quickly capture the impact of new information about the companies. The aim of this paper is to perform a comprehensive comparison of out-of-sample forecast performance of stock returns among methods. The results show that Ridge Regression produces the best performance among all methods with a significant advantage. To assess the robustness of the results, different portfolios were formed. The returns obtained for the portfolio built with the most volatiles stocks and the portfolio that exploits the predictability of machine learning methods, even under a conservative assumption on transaction cost, suggest that these approaches appear to be promising for traders. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/12/12138/tde-10052021-212420/ |
url |
https://www.teses.usp.br/teses/disponiveis/12/12138/tde-10052021-212420/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256911540387840 |