Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.

Detalhes bibliográficos
Autor(a) principal: Maiali, André Cury
Data de Publicação: 2006
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-15092006-155659/
Resumo: Nesta tese abordamos o problema do hedging de mínima variância de derivativos em mercados incompletos usando a teoria de controle ótimo estocástico com critério quadrático de otimização. Desenvolvemos um modelo geral de apreçamento e hedging de derivativos em mercados incompletos, a tempo discreto, que é capaz de acomodar qualquer tipo de payoff com característica européia que dependa de n ativos de risco. Nesse modelo, o mercado pode apresentar diferentes modos de operação, o que foi formalizado matematicamente por meio de uma cadeia de Markov. Também desenvolvemos um modelo geral de apreçamento e hedging de derivativos em mercados incompletos, a tempo discreto e espaço de estados contínuo, que é capaz de acomodar qualquer tipo de payoff com característica européia que dependa de um ativo de risco cujos retornos sejam representados por um processo de difusão com saltos. Desenvolvemos, ainda, expressões analíticas fechadas para o apreçamento e hedging de uma opção de compra européia vanilla em duas situações: (1) quando os retornos do ativo de risco são representados por um processo de difusão com saltos, e (2) quando os retornos do ativo de risco são representados por um processo de Wiener. Por fim, realizamos simulações numéricas para o controle (hedging) de uma opção de compra européia vanilla quando os retornos do ativo de risco são representados por um processo de Wiener, e comparamos os resultados obtidos com a estratégia de controle derivada do modelo de Black & Scholes.
id USP_d5071c920806bba93bb6c8ca0898d821
oai_identifier_str oai:teses.usp.br:tde-15092006-155659
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos. Discrete-time, continuous state-space ctochastic optimal control applied to derivatives.Controle ótimoDerivativesDerivativosOptimal controlProcessos estocásticosStochastic processesNesta tese abordamos o problema do hedging de mínima variância de derivativos em mercados incompletos usando a teoria de controle ótimo estocástico com critério quadrático de otimização. Desenvolvemos um modelo geral de apreçamento e hedging de derivativos em mercados incompletos, a tempo discreto, que é capaz de acomodar qualquer tipo de payoff com característica européia que dependa de n ativos de risco. Nesse modelo, o mercado pode apresentar diferentes modos de operação, o que foi formalizado matematicamente por meio de uma cadeia de Markov. Também desenvolvemos um modelo geral de apreçamento e hedging de derivativos em mercados incompletos, a tempo discreto e espaço de estados contínuo, que é capaz de acomodar qualquer tipo de payoff com característica européia que dependa de um ativo de risco cujos retornos sejam representados por um processo de difusão com saltos. Desenvolvemos, ainda, expressões analíticas fechadas para o apreçamento e hedging de uma opção de compra européia vanilla em duas situações: (1) quando os retornos do ativo de risco são representados por um processo de difusão com saltos, e (2) quando os retornos do ativo de risco são representados por um processo de Wiener. Por fim, realizamos simulações numéricas para o controle (hedging) de uma opção de compra européia vanilla quando os retornos do ativo de risco são representados por um processo de Wiener, e comparamos os resultados obtidos com a estratégia de controle derivada do modelo de Black & Scholes.In this thesis we approach the mean-variance hedging problem of derivatives in incomplete markets employing the theory of stochastic optimal control with quadratic optimization criteria. We developed a general derivatives pricing and hedging model in incomplete markets, in discrete time, capable of accommodating any type of European payoff contingent on n risky assets. In this model, the market may exhibit different operating modes, which were mathematically formalized by means of a Markov chain. We also developed a general derivatives pricing and hedging model in incomplete markets, in discrete time and continuous state space, capable of accommodating any type of European payoff contingent on one risky asset whose returns are described by a jump diffusion process. Even further, we developed closed-form analytical expressions for the pricing and hedging of a European vanilla call option in two situations: (1) when the risky asset returns are described by a jump diffusion process, and (2) when the risky asset returns are described by a Wiener process. Finally, we simulated the control (hedging) of a European vanilla call option when the risky asset returns are described by a Wiener process, and compared the results to those obtained with the control strategy derived from the Black & Scholes model.Biblioteca Digitais de Teses e Dissertações da USPCosta, Oswaldo Luiz do ValleMaiali, André Cury2006-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3139/tde-15092006-155659/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-15092006-155659Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.
Discrete-time, continuous state-space ctochastic optimal control applied to derivatives.
title Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.
spellingShingle Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.
Maiali, André Cury
Controle ótimo
Derivatives
Derivativos
Optimal control
Processos estocásticos
Stochastic processes
title_short Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.
title_full Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.
title_fullStr Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.
title_full_unstemmed Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.
title_sort Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.
author Maiali, André Cury
author_facet Maiali, André Cury
author_role author
dc.contributor.none.fl_str_mv Costa, Oswaldo Luiz do Valle
dc.contributor.author.fl_str_mv Maiali, André Cury
dc.subject.por.fl_str_mv Controle ótimo
Derivatives
Derivativos
Optimal control
Processos estocásticos
Stochastic processes
topic Controle ótimo
Derivatives
Derivativos
Optimal control
Processos estocásticos
Stochastic processes
description Nesta tese abordamos o problema do hedging de mínima variância de derivativos em mercados incompletos usando a teoria de controle ótimo estocástico com critério quadrático de otimização. Desenvolvemos um modelo geral de apreçamento e hedging de derivativos em mercados incompletos, a tempo discreto, que é capaz de acomodar qualquer tipo de payoff com característica européia que dependa de n ativos de risco. Nesse modelo, o mercado pode apresentar diferentes modos de operação, o que foi formalizado matematicamente por meio de uma cadeia de Markov. Também desenvolvemos um modelo geral de apreçamento e hedging de derivativos em mercados incompletos, a tempo discreto e espaço de estados contínuo, que é capaz de acomodar qualquer tipo de payoff com característica européia que dependa de um ativo de risco cujos retornos sejam representados por um processo de difusão com saltos. Desenvolvemos, ainda, expressões analíticas fechadas para o apreçamento e hedging de uma opção de compra européia vanilla em duas situações: (1) quando os retornos do ativo de risco são representados por um processo de difusão com saltos, e (2) quando os retornos do ativo de risco são representados por um processo de Wiener. Por fim, realizamos simulações numéricas para o controle (hedging) de uma opção de compra européia vanilla quando os retornos do ativo de risco são representados por um processo de Wiener, e comparamos os resultados obtidos com a estratégia de controle derivada do modelo de Black & Scholes.
publishDate 2006
dc.date.none.fl_str_mv 2006-06-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3139/tde-15092006-155659/
url http://www.teses.usp.br/teses/disponiveis/3/3139/tde-15092006-155659/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257029226266624