Formula de jorge-meeks, a superficie de costa e sua unicidade
Autor(a) principal: | |
---|---|
Data de Publicação: | 1993 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-002337/ |
Resumo: | Neste trabalho, estudamos inicialmente o comportamento dos fins de uma superficie minima do 'R POT.3', completa e com curvatura total finita. Para isso, provamos que uma superficie completa e orientavel do 'R POT.3' com topologia finita e cuja aplicacao normal de gauss se estende aos fins e propriamente imersa em 'R POT.3'. Alem disso, a interseccao desta superficie com uma esfera de raio r sao curvas fechadas imersas em 'S POT.2' (r) que convergem 'C POT.1' para geodesicas com multiplicidade em 'S POT.2' (r) quando r tende a infinito, sendo a convergencia 'C POT.INFINITO' se a superficie for minima. Mostramos, ainda, a formula de jorge-meeks, que relaciona a curvatura total de uma superficie com sua caracteristica de euler e multiplicidade de seus fins. Em seguida, construimos a superficie de costa, mostrando que ela e mergulhada e se uma superficie minima completa do 'R POT.3' tem curvatura total finita, genero 1, tres fins mergulhados e paralelos sendo dois do tipo catenoide e um do tipo planar, entao ela e a superficie de costa |
id |
USP_d69d5442a4c3f9013733d912d29098ba |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-002337 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Formula de jorge-meeks, a superficie de costa e sua unicidadenot availableTopologiaNeste trabalho, estudamos inicialmente o comportamento dos fins de uma superficie minima do 'R POT.3', completa e com curvatura total finita. Para isso, provamos que uma superficie completa e orientavel do 'R POT.3' com topologia finita e cuja aplicacao normal de gauss se estende aos fins e propriamente imersa em 'R POT.3'. Alem disso, a interseccao desta superficie com uma esfera de raio r sao curvas fechadas imersas em 'S POT.2' (r) que convergem 'C POT.1' para geodesicas com multiplicidade em 'S POT.2' (r) quando r tende a infinito, sendo a convergencia 'C POT.INFINITO' se a superficie for minima. Mostramos, ainda, a formula de jorge-meeks, que relaciona a curvatura total de uma superficie com sua caracteristica de euler e multiplicidade de seus fins. Em seguida, construimos a superficie de costa, mostrando que ela e mergulhada e se uma superficie minima completa do 'R POT.3' tem curvatura total finita, genero 1, tres fins mergulhados e paralelos sendo dois do tipo catenoide e um do tipo planar, entao ela e a superficie de costanot availableBiblioteca Digitais de Teses e Dissertações da USPSimoes, Plinio Amarante QuirinoAbdounur, Oscar João1993-05-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-002337/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T18:53:25Zoai:teses.usp.br:tde-20210729-002337Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T18:53:25Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Formula de jorge-meeks, a superficie de costa e sua unicidade not available |
title |
Formula de jorge-meeks, a superficie de costa e sua unicidade |
spellingShingle |
Formula de jorge-meeks, a superficie de costa e sua unicidade Abdounur, Oscar João Topologia |
title_short |
Formula de jorge-meeks, a superficie de costa e sua unicidade |
title_full |
Formula de jorge-meeks, a superficie de costa e sua unicidade |
title_fullStr |
Formula de jorge-meeks, a superficie de costa e sua unicidade |
title_full_unstemmed |
Formula de jorge-meeks, a superficie de costa e sua unicidade |
title_sort |
Formula de jorge-meeks, a superficie de costa e sua unicidade |
author |
Abdounur, Oscar João |
author_facet |
Abdounur, Oscar João |
author_role |
author |
dc.contributor.none.fl_str_mv |
Simoes, Plinio Amarante Quirino |
dc.contributor.author.fl_str_mv |
Abdounur, Oscar João |
dc.subject.por.fl_str_mv |
Topologia |
topic |
Topologia |
description |
Neste trabalho, estudamos inicialmente o comportamento dos fins de uma superficie minima do 'R POT.3', completa e com curvatura total finita. Para isso, provamos que uma superficie completa e orientavel do 'R POT.3' com topologia finita e cuja aplicacao normal de gauss se estende aos fins e propriamente imersa em 'R POT.3'. Alem disso, a interseccao desta superficie com uma esfera de raio r sao curvas fechadas imersas em 'S POT.2' (r) que convergem 'C POT.1' para geodesicas com multiplicidade em 'S POT.2' (r) quando r tende a infinito, sendo a convergencia 'C POT.INFINITO' se a superficie for minima. Mostramos, ainda, a formula de jorge-meeks, que relaciona a curvatura total de uma superficie com sua caracteristica de euler e multiplicidade de seus fins. Em seguida, construimos a superficie de costa, mostrando que ela e mergulhada e se uma superficie minima completa do 'R POT.3' tem curvatura total finita, genero 1, tres fins mergulhados e paralelos sendo dois do tipo catenoide e um do tipo planar, entao ela e a superficie de costa |
publishDate |
1993 |
dc.date.none.fl_str_mv |
1993-05-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-002337/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-002337/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257206618062848 |