Subespaços invariantes em algumas álgebras báricas

Detalhes bibliográficos
Autor(a) principal: Silva, Juaci Picanço da
Data de Publicação: 1999
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-022139/
Resumo: Neste trabalho, introduzimos certos subespaços do núcleo de algumas álgebras báricas (A,'ômega'), dentre elas as álgebras de Bernstein. O conjunto Ip(A) dos idempotentes de peso l das álgebras que consideramos é não vazio e cada e 'PERTENCE A'(A)determina uma decomposição de A da seguinte forma: A = K e 'U IND.e' 'V IND.e', onde Ke, 'U IND.e'e 'V IND.e' são os subespaços próprios do operador linear de A definido por 'L IND.E'(x) - ex. Chamamos de P-subespaços aos subespaços que possuemuma expressão polinomial em termos de 'U IND.e' e 'V IND.e', por exemplo: 'U IND.e V IND. e', 'V IND.E POT.2','U IND.e POT.2'+'U IND.e POT.3', 'V IND.e POT 3'+ '('U IND e V IND e') POT.2'. Nosso principal objetivo é estudar a invariância dosP-subespaços e também a invariância da dimensão dos P-subespaços com relação à mudança do idempotente. Também consideramos um caso (A, 'lâmbda'), onde 'lâmbda' é apenas uma forma linear
id USP_db7f70ad5d031bd157d7fed52278058f
oai_identifier_str oai:teses.usp.br:tde-20210729-022139
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Subespaços invariantes em algumas álgebras báricasnot availableAnéis E Álgebras Não AssociativosNeste trabalho, introduzimos certos subespaços do núcleo de algumas álgebras báricas (A,'ômega'), dentre elas as álgebras de Bernstein. O conjunto Ip(A) dos idempotentes de peso l das álgebras que consideramos é não vazio e cada e 'PERTENCE A'(A)determina uma decomposição de A da seguinte forma: A = K e 'U IND.e' 'V IND.e', onde Ke, 'U IND.e'e 'V IND.e' são os subespaços próprios do operador linear de A definido por 'L IND.E'(x) - ex. Chamamos de P-subespaços aos subespaços que possuemuma expressão polinomial em termos de 'U IND.e' e 'V IND.e', por exemplo: 'U IND.e V IND. e', 'V IND.E POT.2','U IND.e POT.2'+'U IND.e POT.3', 'V IND.e POT 3'+ '('U IND e V IND e') POT.2'. Nosso principal objetivo é estudar a invariância dosP-subespaços e também a invariância da dimensão dos P-subespaços com relação à mudança do idempotente. Também consideramos um caso (A, 'lâmbda'), onde 'lâmbda' é apenas uma forma linearIn this work, we will introduce certain subspaces of the kernel of some baric algebras (A,'ômega') and among them, the Bernstein algebras. The set Ip(A) of idempotents of weight 1 of the algebras which we consider is not empty and each e'PERTENCE A' Ip(A) determines a decomposition of A which has the following form: A = K 'U IND.e'V IND.e', where K e, 'U IND.e' and 'V IND.e' are the proper subspaces of the linear operator of A defined by 'L IND.e(x)'= ex. We will callP-subspaces those subspaces that have a polynomial expression in terms of 'U IND.e' and 'V IND.e' for instance: 'U IND.e V IND.e', 'V IND.E POT.2', 'U IND.e POT.2'+ 'U IND.e POT.3', 'V IND.e POT.3'+ ('U IND.e V IND.e')'V IND.e'+ ( 'U IND.e VIND.e') POT.2'. Our main purpose is to study the invariance of P-subspaces and also the invariance of dimension of P-subspaces under change of idempotent. We also consider a case (A, 'lâmbda'), where 'lâmbda' is only a linear formBiblioteca Digitais de Teses e Dissertações da USPCosta, Roberto Celso FabrícioSilva, Juaci Picanço da1999-01-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-022139/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:01:32Zoai:teses.usp.br:tde-20210729-022139Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:01:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Subespaços invariantes em algumas álgebras báricas
not available
title Subespaços invariantes em algumas álgebras báricas
spellingShingle Subespaços invariantes em algumas álgebras báricas
Silva, Juaci Picanço da
Anéis E Álgebras Não Associativos
title_short Subespaços invariantes em algumas álgebras báricas
title_full Subespaços invariantes em algumas álgebras báricas
title_fullStr Subespaços invariantes em algumas álgebras báricas
title_full_unstemmed Subespaços invariantes em algumas álgebras báricas
title_sort Subespaços invariantes em algumas álgebras báricas
author Silva, Juaci Picanço da
author_facet Silva, Juaci Picanço da
author_role author
dc.contributor.none.fl_str_mv Costa, Roberto Celso Fabrício
dc.contributor.author.fl_str_mv Silva, Juaci Picanço da
dc.subject.por.fl_str_mv Anéis E Álgebras Não Associativos
topic Anéis E Álgebras Não Associativos
description Neste trabalho, introduzimos certos subespaços do núcleo de algumas álgebras báricas (A,'ômega'), dentre elas as álgebras de Bernstein. O conjunto Ip(A) dos idempotentes de peso l das álgebras que consideramos é não vazio e cada e 'PERTENCE A'(A)determina uma decomposição de A da seguinte forma: A = K e 'U IND.e' 'V IND.e', onde Ke, 'U IND.e'e 'V IND.e' são os subespaços próprios do operador linear de A definido por 'L IND.E'(x) - ex. Chamamos de P-subespaços aos subespaços que possuemuma expressão polinomial em termos de 'U IND.e' e 'V IND.e', por exemplo: 'U IND.e V IND. e', 'V IND.E POT.2','U IND.e POT.2'+'U IND.e POT.3', 'V IND.e POT 3'+ '('U IND e V IND e') POT.2'. Nosso principal objetivo é estudar a invariância dosP-subespaços e também a invariância da dimensão dos P-subespaços com relação à mudança do idempotente. Também consideramos um caso (A, 'lâmbda'), onde 'lâmbda' é apenas uma forma linear
publishDate 1999
dc.date.none.fl_str_mv 1999-01-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-022139/
url https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-022139/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826318883756179456