Subespaços invariantes em algumas álgebras báricas
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-022139/ |
Resumo: | Neste trabalho, introduzimos certos subespaços do núcleo de algumas álgebras báricas (A,'ômega'), dentre elas as álgebras de Bernstein. O conjunto Ip(A) dos idempotentes de peso l das álgebras que consideramos é não vazio e cada e 'PERTENCE A'(A)determina uma decomposição de A da seguinte forma: A = K e 'U IND.e' 'V IND.e', onde Ke, 'U IND.e'e 'V IND.e' são os subespaços próprios do operador linear de A definido por 'L IND.E'(x) - ex. Chamamos de P-subespaços aos subespaços que possuemuma expressão polinomial em termos de 'U IND.e' e 'V IND.e', por exemplo: 'U IND.e V IND. e', 'V IND.E POT.2','U IND.e POT.2'+'U IND.e POT.3', 'V IND.e POT 3'+ '('U IND e V IND e') POT.2'. Nosso principal objetivo é estudar a invariância dosP-subespaços e também a invariância da dimensão dos P-subespaços com relação à mudança do idempotente. Também consideramos um caso (A, 'lâmbda'), onde 'lâmbda' é apenas uma forma linear |
id |
USP_db7f70ad5d031bd157d7fed52278058f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-022139 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Subespaços invariantes em algumas álgebras báricasnot availableAnéis E Álgebras Não AssociativosNeste trabalho, introduzimos certos subespaços do núcleo de algumas álgebras báricas (A,'ômega'), dentre elas as álgebras de Bernstein. O conjunto Ip(A) dos idempotentes de peso l das álgebras que consideramos é não vazio e cada e 'PERTENCE A'(A)determina uma decomposição de A da seguinte forma: A = K e 'U IND.e' 'V IND.e', onde Ke, 'U IND.e'e 'V IND.e' são os subespaços próprios do operador linear de A definido por 'L IND.E'(x) - ex. Chamamos de P-subespaços aos subespaços que possuemuma expressão polinomial em termos de 'U IND.e' e 'V IND.e', por exemplo: 'U IND.e V IND. e', 'V IND.E POT.2','U IND.e POT.2'+'U IND.e POT.3', 'V IND.e POT 3'+ '('U IND e V IND e') POT.2'. Nosso principal objetivo é estudar a invariância dosP-subespaços e também a invariância da dimensão dos P-subespaços com relação à mudança do idempotente. Também consideramos um caso (A, 'lâmbda'), onde 'lâmbda' é apenas uma forma linearIn this work, we will introduce certain subspaces of the kernel of some baric algebras (A,'ômega') and among them, the Bernstein algebras. The set Ip(A) of idempotents of weight 1 of the algebras which we consider is not empty and each e'PERTENCE A' Ip(A) determines a decomposition of A which has the following form: A = K 'U IND.e'V IND.e', where K e, 'U IND.e' and 'V IND.e' are the proper subspaces of the linear operator of A defined by 'L IND.e(x)'= ex. We will callP-subspaces those subspaces that have a polynomial expression in terms of 'U IND.e' and 'V IND.e' for instance: 'U IND.e V IND.e', 'V IND.E POT.2', 'U IND.e POT.2'+ 'U IND.e POT.3', 'V IND.e POT.3'+ ('U IND.e V IND.e')'V IND.e'+ ( 'U IND.e VIND.e') POT.2'. Our main purpose is to study the invariance of P-subspaces and also the invariance of dimension of P-subspaces under change of idempotent. We also consider a case (A, 'lâmbda'), where 'lâmbda' is only a linear formBiblioteca Digitais de Teses e Dissertações da USPCosta, Roberto Celso FabrícioSilva, Juaci Picanço da1999-01-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-022139/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:01:32Zoai:teses.usp.br:tde-20210729-022139Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:01:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Subespaços invariantes em algumas álgebras báricas not available |
title |
Subespaços invariantes em algumas álgebras báricas |
spellingShingle |
Subespaços invariantes em algumas álgebras báricas Silva, Juaci Picanço da Anéis E Álgebras Não Associativos |
title_short |
Subespaços invariantes em algumas álgebras báricas |
title_full |
Subespaços invariantes em algumas álgebras báricas |
title_fullStr |
Subespaços invariantes em algumas álgebras báricas |
title_full_unstemmed |
Subespaços invariantes em algumas álgebras báricas |
title_sort |
Subespaços invariantes em algumas álgebras báricas |
author |
Silva, Juaci Picanço da |
author_facet |
Silva, Juaci Picanço da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Costa, Roberto Celso Fabrício |
dc.contributor.author.fl_str_mv |
Silva, Juaci Picanço da |
dc.subject.por.fl_str_mv |
Anéis E Álgebras Não Associativos |
topic |
Anéis E Álgebras Não Associativos |
description |
Neste trabalho, introduzimos certos subespaços do núcleo de algumas álgebras báricas (A,'ômega'), dentre elas as álgebras de Bernstein. O conjunto Ip(A) dos idempotentes de peso l das álgebras que consideramos é não vazio e cada e 'PERTENCE A'(A)determina uma decomposição de A da seguinte forma: A = K e 'U IND.e' 'V IND.e', onde Ke, 'U IND.e'e 'V IND.e' são os subespaços próprios do operador linear de A definido por 'L IND.E'(x) - ex. Chamamos de P-subespaços aos subespaços que possuemuma expressão polinomial em termos de 'U IND.e' e 'V IND.e', por exemplo: 'U IND.e V IND. e', 'V IND.E POT.2','U IND.e POT.2'+'U IND.e POT.3', 'V IND.e POT 3'+ '('U IND e V IND e') POT.2'. Nosso principal objetivo é estudar a invariância dosP-subespaços e também a invariância da dimensão dos P-subespaços com relação à mudança do idempotente. Também consideramos um caso (A, 'lâmbda'), onde 'lâmbda' é apenas uma forma linear |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-01-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-022139/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-022139/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1826318883756179456 |