Formas p-invariantes em algebras de bernstein
Autor(a) principal: | |
---|---|
Data de Publicação: | 1996 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-012124/ |
Resumo: | Introduzimos o conceito de formas lineares p-invariantes numa algebra barica, como uma generalizacao das formas invariantes definidas por lyubich. O conjunto das formas lineares p-invariantes numa algebra barica (a,w) e um subespaco vetorial 'J IND.P' do espaco dual a*, com dimensao pelo menos 1. Calculamos anulador de j p para todo train polinomio p de grau arbitrario, no caso em que a e uma algebra de bernstein. Algumas consequencias sao demonstradas, relacionadas ao problema de comparar train algebras e algebras de bernstein. Como outra consequencia, demonstramos que o subespaco uz + 'U POT.2'z tem dimensao invariante sob mudanca de idempotentes. Na secao final, provamos alguns resultados para algebras de bernstein excepcionais |
id |
USP_3a6bb277b0f5ed42905fa8572d0d50d2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-012124 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Formas p-invariantes em algebras de bernsteinnot availableAnéis E Álgebras Não AssociativosIntroduzimos o conceito de formas lineares p-invariantes numa algebra barica, como uma generalizacao das formas invariantes definidas por lyubich. O conjunto das formas lineares p-invariantes numa algebra barica (a,w) e um subespaco vetorial 'J IND.P' do espaco dual a*, com dimensao pelo menos 1. Calculamos anulador de j p para todo train polinomio p de grau arbitrario, no caso em que a e uma algebra de bernstein. Algumas consequencias sao demonstradas, relacionadas ao problema de comparar train algebras e algebras de bernstein. Como outra consequencia, demonstramos que o subespaco uz + 'U POT.2'z tem dimensao invariante sob mudanca de idempotentes. Na secao final, provamos alguns resultados para algebras de bernstein excepcionaisnot availableBiblioteca Digitais de Teses e Dissertações da USPCosta, Roberto Celso FabrícioLelis, Maria Luiza Paiva e Silva1996-12-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-012124/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-07T18:02:51Zoai:teses.usp.br:tde-20210729-012124Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-07T18:02:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Formas p-invariantes em algebras de bernstein not available |
title |
Formas p-invariantes em algebras de bernstein |
spellingShingle |
Formas p-invariantes em algebras de bernstein Lelis, Maria Luiza Paiva e Silva Anéis E Álgebras Não Associativos |
title_short |
Formas p-invariantes em algebras de bernstein |
title_full |
Formas p-invariantes em algebras de bernstein |
title_fullStr |
Formas p-invariantes em algebras de bernstein |
title_full_unstemmed |
Formas p-invariantes em algebras de bernstein |
title_sort |
Formas p-invariantes em algebras de bernstein |
author |
Lelis, Maria Luiza Paiva e Silva |
author_facet |
Lelis, Maria Luiza Paiva e Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Costa, Roberto Celso Fabrício |
dc.contributor.author.fl_str_mv |
Lelis, Maria Luiza Paiva e Silva |
dc.subject.por.fl_str_mv |
Anéis E Álgebras Não Associativos |
topic |
Anéis E Álgebras Não Associativos |
description |
Introduzimos o conceito de formas lineares p-invariantes numa algebra barica, como uma generalizacao das formas invariantes definidas por lyubich. O conjunto das formas lineares p-invariantes numa algebra barica (a,w) e um subespaco vetorial 'J IND.P' do espaco dual a*, com dimensao pelo menos 1. Calculamos anulador de j p para todo train polinomio p de grau arbitrario, no caso em que a e uma algebra de bernstein. Algumas consequencias sao demonstradas, relacionadas ao problema de comparar train algebras e algebras de bernstein. Como outra consequencia, demonstramos que o subespaco uz + 'U POT.2'z tem dimensao invariante sob mudanca de idempotentes. Na secao final, provamos alguns resultados para algebras de bernstein excepcionais |
publishDate |
1996 |
dc.date.none.fl_str_mv |
1996-12-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-012124/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-012124/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256524667224064 |