Resolubilidade local de equações semilineares no plano
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-15082012-231548/ |
Resumo: | Seja Ω ⊂ ℝ2 aberto contendo a origem. Denotando as variáveis por (x,t), provamos a resolubilidade local, em um disco D aberto centrado na origem, D ⊂ Ω, de equações semilineares da forma Pu = f(x,t,u); onde P = ∂t + a(x,t)∂x, a ∈ C2 (Ω), Im ≠ 0 e f ∈ C2 (Ω × ℂ), usando o princípio da contração; P = ∂t - itk∂x, k: número inteiro positivo par e f ∈ C∞(ℝ2 × ℂ), usando o teorema da resolubilidade local de Hounie e Santiago. |
id |
USP_e1c121462fb959cb9f5003277cee4fee |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-15082012-231548 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Resolubilidade local de equações semilineares no planoLocal solvability of semilinear equations in the planeResolubilidadeSistemasSolvabilitySubdeterminadosSystemsUndeterminedSeja Ω ⊂ ℝ2 aberto contendo a origem. Denotando as variáveis por (x,t), provamos a resolubilidade local, em um disco D aberto centrado na origem, D ⊂ Ω, de equações semilineares da forma Pu = f(x,t,u); onde P = ∂t + a(x,t)∂x, a ∈ C2 (Ω), Im ≠ 0 e f ∈ C2 (Ω × ℂ), usando o princípio da contração; P = ∂t - itk∂x, k: número inteiro positivo par e f ∈ C∞(ℝ2 × ℂ), usando o teorema da resolubilidade local de Hounie e Santiago.Let Ω be an open set of ℝ2 containing the origin. Using the variables (x,t), we prove the local solvability, on an open ball D centered at the origin, D ⊂ Ω, of semilinear equations of the form Pu = f(x,t,u); where P = ∂t + a(x,t)∂x, a ∈ C2 (Ω), Im ≠ 0 and f ∈ C2 (Ω × ℂ), using the principle of contracting mappings; P = ∂t - itk∂x, k: even positive integer number and f ∈ C∞(ℝ2 × ℂ), using the local solvability theorem of Hounie and Santiago.Biblioteca Digitais de Teses e Dissertações da USPCordaro, Paulo DomingosYamaoka, Luís Cláudio2006-09-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-15082012-231548/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-15082012-231548Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Resolubilidade local de equações semilineares no plano Local solvability of semilinear equations in the plane |
title |
Resolubilidade local de equações semilineares no plano |
spellingShingle |
Resolubilidade local de equações semilineares no plano Yamaoka, Luís Cláudio Resolubilidade Sistemas Solvability Subdeterminados Systems Undetermined |
title_short |
Resolubilidade local de equações semilineares no plano |
title_full |
Resolubilidade local de equações semilineares no plano |
title_fullStr |
Resolubilidade local de equações semilineares no plano |
title_full_unstemmed |
Resolubilidade local de equações semilineares no plano |
title_sort |
Resolubilidade local de equações semilineares no plano |
author |
Yamaoka, Luís Cláudio |
author_facet |
Yamaoka, Luís Cláudio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cordaro, Paulo Domingos |
dc.contributor.author.fl_str_mv |
Yamaoka, Luís Cláudio |
dc.subject.por.fl_str_mv |
Resolubilidade Sistemas Solvability Subdeterminados Systems Undetermined |
topic |
Resolubilidade Sistemas Solvability Subdeterminados Systems Undetermined |
description |
Seja Ω ⊂ ℝ2 aberto contendo a origem. Denotando as variáveis por (x,t), provamos a resolubilidade local, em um disco D aberto centrado na origem, D ⊂ Ω, de equações semilineares da forma Pu = f(x,t,u); onde P = ∂t + a(x,t)∂x, a ∈ C2 (Ω), Im ≠ 0 e f ∈ C2 (Ω × ℂ), usando o princípio da contração; P = ∂t - itk∂x, k: número inteiro positivo par e f ∈ C∞(ℝ2 × ℂ), usando o teorema da resolubilidade local de Hounie e Santiago. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-09-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-15082012-231548/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-15082012-231548/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257026856484864 |