"Métodos numéricos para leis de conservação"
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012005-114350/ |
Resumo: | O objetivo deste projeto é o estudo de técnicas numéricas robustas para aproximação da solução de leis de conservação hiperbólicas escalares unidimensionais e bidimensionais e de sistemas de leis de conservação hiperbólicas. Para alcançar tal objetivo, estudamos esquemas conservativos com propriedades especiais, tais como, esquemas upwind, TVD, Godunov, limitante de fluxo e limitante de inclinação. A solução de um sistema de leis de conservação pode exibir descontinuidades do tipo choque, rarefação ou de contato. Assim, o desenvolvimento de técnicas numéricas capazes de reproduzir e tratar esses comportamentos é desejável. Além de representar corretamente a descontinuidade os esquemas numéricos têm ainda uma tarefa mais árdua; aquela de escolher a solução singular correta, a chamada solução entrópica. Os métodos de Godunov, limitantes de fluxo e limitantes de inclinação são técnicas numéricas que possuem as características apropriadas para aproximar a solução entrópica de uma lei de conservação. |
id |
USP_ebb8e1029026b891fb656aed4a049cd0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17012005-114350 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
"Métodos numéricos para leis de conservação" Numerical Methods for Conservation LawsConservation LawsEquações Diferenciais ParciaisLei de ConservaçãoMétodos NuméricosNumerical MethodsPartial Differential EquationsO objetivo deste projeto é o estudo de técnicas numéricas robustas para aproximação da solução de leis de conservação hiperbólicas escalares unidimensionais e bidimensionais e de sistemas de leis de conservação hiperbólicas. Para alcançar tal objetivo, estudamos esquemas conservativos com propriedades especiais, tais como, esquemas upwind, TVD, Godunov, limitante de fluxo e limitante de inclinação. A solução de um sistema de leis de conservação pode exibir descontinuidades do tipo choque, rarefação ou de contato. Assim, o desenvolvimento de técnicas numéricas capazes de reproduzir e tratar esses comportamentos é desejável. Além de representar corretamente a descontinuidade os esquemas numéricos têm ainda uma tarefa mais árdua; aquela de escolher a solução singular correta, a chamada solução entrópica. Os métodos de Godunov, limitantes de fluxo e limitantes de inclinação são técnicas numéricas que possuem as características apropriadas para aproximar a solução entrópica de uma lei de conservação.The aim of this work is the study of robust numerical techniques for approximating the solution of scalar and systems of hyperbolic conservation laws. To achieve this, we studied conservative schemes with special properties, such as, schemes upwind, TVD, Godunov, flux limiters and slope limiters. The solution of a system of conservation laws can present discontinuities, like shocks, rarefaction or contact. Therefore, the development of numerical techniques capable of reproducing such featurs are highly desirable. Furthermore, besides resolving singularities, it is required that the numerical method chooses the correct weak solution, that is, the entropic solution. Godunov, flux limiters and slope limiters are techniques that show the appropriate behaviour when applied to conservation laws. Biblioteca Digitais de Teses e Dissertações da USPCuminato, José AlbertoBezerra, Débora de Jesus2003-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012005-114350/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:49Zoai:teses.usp.br:tde-17012005-114350Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
"Métodos numéricos para leis de conservação" Numerical Methods for Conservation Laws |
title |
"Métodos numéricos para leis de conservação" |
spellingShingle |
"Métodos numéricos para leis de conservação" Bezerra, Débora de Jesus Conservation Laws Equações Diferenciais Parciais Lei de Conservação Métodos Numéricos Numerical Methods Partial Differential Equations |
title_short |
"Métodos numéricos para leis de conservação" |
title_full |
"Métodos numéricos para leis de conservação" |
title_fullStr |
"Métodos numéricos para leis de conservação" |
title_full_unstemmed |
"Métodos numéricos para leis de conservação" |
title_sort |
"Métodos numéricos para leis de conservação" |
author |
Bezerra, Débora de Jesus |
author_facet |
Bezerra, Débora de Jesus |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cuminato, José Alberto |
dc.contributor.author.fl_str_mv |
Bezerra, Débora de Jesus |
dc.subject.por.fl_str_mv |
Conservation Laws Equações Diferenciais Parciais Lei de Conservação Métodos Numéricos Numerical Methods Partial Differential Equations |
topic |
Conservation Laws Equações Diferenciais Parciais Lei de Conservação Métodos Numéricos Numerical Methods Partial Differential Equations |
description |
O objetivo deste projeto é o estudo de técnicas numéricas robustas para aproximação da solução de leis de conservação hiperbólicas escalares unidimensionais e bidimensionais e de sistemas de leis de conservação hiperbólicas. Para alcançar tal objetivo, estudamos esquemas conservativos com propriedades especiais, tais como, esquemas upwind, TVD, Godunov, limitante de fluxo e limitante de inclinação. A solução de um sistema de leis de conservação pode exibir descontinuidades do tipo choque, rarefação ou de contato. Assim, o desenvolvimento de técnicas numéricas capazes de reproduzir e tratar esses comportamentos é desejável. Além de representar corretamente a descontinuidade os esquemas numéricos têm ainda uma tarefa mais árdua; aquela de escolher a solução singular correta, a chamada solução entrópica. Os métodos de Godunov, limitantes de fluxo e limitantes de inclinação são técnicas numéricas que possuem as características apropriadas para aproximar a solução entrópica de uma lei de conservação. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-12-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012005-114350/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012005-114350/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257088150994944 |