Node concordance: a local homophily prediction task in graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-200028/ |
Resumo: | Homophily is a characteristic present in many real-world graphs, this work proposes a task to predict the local manifestation of it, the node concordance. The task is explored in benchmark datasets for node classification, using node labels to create the concordance label, and with two frameworks, one positional and one structured, for a semi-supervised version of the task are pro- posed. In those datasets, the task can be viewed as a subtask of the node classification, we want to predict if two nodes are same-class nodes, not taking into account which classes the nodes belong to. It is shown here that there is a performance advantage in tackling node concordance directly in this case. The frameworks consist of utilizing Graph Neural Networks (GNNs) and Node2Vec to generate node embeddings that are informative of the node concordance. The positional framework is trained in an unsupervised manner, actually targeting link prediction, using the graph topology as its only feature, and is shown to hold predictive power for node concordance although the relation between the link prediction and node concordance predictive powers is not direct, as is shown in this work . The structural embeddings are trained directly for node concordance, using node features and GNNs convolutional mechanisms, and generally perform better than the posi- tional framework, but are more sensitive to the number of labeled edges. It is also shown that the two frameworks can be used in combination, in an ensemble, since they contain complementary information to each other. This task can be an end in itself if one desires exactly to assess the node concordance of the nodes, or can serve as a preprocessing step, to attribute edge weights or rewire and make projections of the graph. The code of this work is made publicly available on https://github.com/caiolmart/node-concordance. |
id |
USP_ec0f71d31dfcc29694357219c14a93af |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25092023-200028 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Node concordance: a local homophily prediction task in graphsConcordância entre nós: uma tarefa de predição de homofilia localClassificação de nósGraph Neural NetworksGraph Neural NetworksGraph representation learningGraph representation learningGraph topologyHomofiliaHomophilyLink predictionNode classificationPredição de arestasTarefas em grafosTasks on graphsTopologia de grafosHomophily is a characteristic present in many real-world graphs, this work proposes a task to predict the local manifestation of it, the node concordance. The task is explored in benchmark datasets for node classification, using node labels to create the concordance label, and with two frameworks, one positional and one structured, for a semi-supervised version of the task are pro- posed. In those datasets, the task can be viewed as a subtask of the node classification, we want to predict if two nodes are same-class nodes, not taking into account which classes the nodes belong to. It is shown here that there is a performance advantage in tackling node concordance directly in this case. The frameworks consist of utilizing Graph Neural Networks (GNNs) and Node2Vec to generate node embeddings that are informative of the node concordance. The positional framework is trained in an unsupervised manner, actually targeting link prediction, using the graph topology as its only feature, and is shown to hold predictive power for node concordance although the relation between the link prediction and node concordance predictive powers is not direct, as is shown in this work . The structural embeddings are trained directly for node concordance, using node features and GNNs convolutional mechanisms, and generally perform better than the posi- tional framework, but are more sensitive to the number of labeled edges. It is also shown that the two frameworks can be used in combination, in an ensemble, since they contain complementary information to each other. This task can be an end in itself if one desires exactly to assess the node concordance of the nodes, or can serve as a preprocessing step, to attribute edge weights or rewire and make projections of the graph. The code of this work is made publicly available on https://github.com/caiolmart/node-concordance.Homofilia é uma característica presente em muitos grafos do mundo real, esse trabalho propõe a tarefa de prever o manifestação local dela, a concordância entre nós. A tarefa é explorada em con- juntos de dados referência de predição de nós, usando os rótulos dos nós para criar o rótulo de con- cordância, e dois frameworks, um posicional e um estrutural, para uma versão semi-supervisionada da tarefa são propostos. Nesses conjuntos de dados, a tarefa pode ser vista como uma subtarefa da classificação de nós, nós queremos prever se dois nós são de mesma classe, sem levar em conta a quais classes eles pertencem. É mostrado que existe um vantangem de performance em atacar o problema de concordância de nós diretamente nesse caso. Os frameworks consistem em utilizar Graph Neural Networks (GNNs) e Node2Vec para gerar embeddings de nós que são informativos da concordância entre nós. O framework posicional é treinado de maneira não-supervisionada, tendo como objetivo, na verdade, a predição de arestas, usando apenas a topologia do grafo como recurso, e apresenta poder preditivo para concordância entre nós apesar de que a relação entre os poderes preditivos para concordância entre nós e predição de arestas não é direta, como é mostrado nesse trabalho . Os embeddings estruturais são treinados diretamente para concordância entre nós, usando as var- iáveis explicativas dos nós e mecanismos convolucionais das GNNs, e geralmente performam melhor do que o framework posicional, mas são mais sensíveis ao número de arestas rotuladas. Também é mostrado que os dois frameworks podem ser usados em combinação, uma vez que eles contém informações complementares um ao outro. Essa tarefa pode ter como fim ela própria se alguém quiser apurar exatamente a concordância entre nós de um grafo, ou pode servir como um passo de pré-processamento, para atribuir pesos às arestas ou alterar e fazer projeções de um grafo. O código desse trabalho é disponibilizado publicamente em https://github.com/caiolmart/node-concordance.Biblioteca Digitais de Teses e Dissertações da USPMauá, Denis DerataniMartinelli, Caio Lorenzetti2023-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-200028/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-10-11T11:47:32Zoai:teses.usp.br:tde-25092023-200028Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-10-11T11:47:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Node concordance: a local homophily prediction task in graphs Concordância entre nós: uma tarefa de predição de homofilia local |
title |
Node concordance: a local homophily prediction task in graphs |
spellingShingle |
Node concordance: a local homophily prediction task in graphs Martinelli, Caio Lorenzetti Classificação de nós Graph Neural Networks Graph Neural Networks Graph representation learning Graph representation learning Graph topology Homofilia Homophily Link prediction Node classification Predição de arestas Tarefas em grafos Tasks on graphs Topologia de grafos |
title_short |
Node concordance: a local homophily prediction task in graphs |
title_full |
Node concordance: a local homophily prediction task in graphs |
title_fullStr |
Node concordance: a local homophily prediction task in graphs |
title_full_unstemmed |
Node concordance: a local homophily prediction task in graphs |
title_sort |
Node concordance: a local homophily prediction task in graphs |
author |
Martinelli, Caio Lorenzetti |
author_facet |
Martinelli, Caio Lorenzetti |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mauá, Denis Deratani |
dc.contributor.author.fl_str_mv |
Martinelli, Caio Lorenzetti |
dc.subject.por.fl_str_mv |
Classificação de nós Graph Neural Networks Graph Neural Networks Graph representation learning Graph representation learning Graph topology Homofilia Homophily Link prediction Node classification Predição de arestas Tarefas em grafos Tasks on graphs Topologia de grafos |
topic |
Classificação de nós Graph Neural Networks Graph Neural Networks Graph representation learning Graph representation learning Graph topology Homofilia Homophily Link prediction Node classification Predição de arestas Tarefas em grafos Tasks on graphs Topologia de grafos |
description |
Homophily is a characteristic present in many real-world graphs, this work proposes a task to predict the local manifestation of it, the node concordance. The task is explored in benchmark datasets for node classification, using node labels to create the concordance label, and with two frameworks, one positional and one structured, for a semi-supervised version of the task are pro- posed. In those datasets, the task can be viewed as a subtask of the node classification, we want to predict if two nodes are same-class nodes, not taking into account which classes the nodes belong to. It is shown here that there is a performance advantage in tackling node concordance directly in this case. The frameworks consist of utilizing Graph Neural Networks (GNNs) and Node2Vec to generate node embeddings that are informative of the node concordance. The positional framework is trained in an unsupervised manner, actually targeting link prediction, using the graph topology as its only feature, and is shown to hold predictive power for node concordance although the relation between the link prediction and node concordance predictive powers is not direct, as is shown in this work . The structural embeddings are trained directly for node concordance, using node features and GNNs convolutional mechanisms, and generally perform better than the posi- tional framework, but are more sensitive to the number of labeled edges. It is also shown that the two frameworks can be used in combination, in an ensemble, since they contain complementary information to each other. This task can be an end in itself if one desires exactly to assess the node concordance of the nodes, or can serve as a preprocessing step, to attribute edge weights or rewire and make projections of the graph. The code of this work is made publicly available on https://github.com/caiolmart/node-concordance. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-200028/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-200028/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257342342594560 |