Contribuições ao estudo de modelos com erros nas variáveis

Detalhes bibliográficos
Autor(a) principal: Andrade Filho, Mário de Castro
Data de Publicação: 2001
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-124730/
Resumo: Neste trabalho estudamos alguns modelos com erros nas variáveis. Consideramos um modelo de análise de covariância (ANCOVA) em que temos variáveis explicativas medidas com erros aditivos e também variáveis explicativas contaminadas por erros multiplicativos. Dois estimadores para os efeitos dos tratamentos são comparados em termos de eficiência relativa assintótica. Mostramos que o estimador de mínimos quadrados ordinários (que ignora os erros de medição) é o mais eficiente. Um estudo de simulação compara os méritos relativos dos dois estimadores em amostras de tamanho pequeno a moderado. Em seguida, uma abordagem de influência local para detectar os efeitos de pequenas perturbações dos dados ou do modelo é aplicada aos modelos de calibração comparativa. Tais modelos são usados tipicamente para comparar vários instrumentos ou métodos de medição e podem ser vistos tanto em uma versão funcional quanto em uma versão estrutural, como acontece com os modelos com erros nas variáveis usuais. Diferentes esquemas de perturbação são considerados e dois exemplos com dados reais ilustram a metodologia desenvolvida. Por último, estendemos o modelo de regressão linear simples para situações mais gerais onde temos erro de medição na variável explicativa e duas ou mais populações estão presentes. Identificabilidade, estimação, um teste de ajuste e influência local são investigadas. Um conjunto de dados reais é analisado de acordo com os métodos propostos
id USP_eebafa191036173ce19313b5a6a6c1f1
oai_identifier_str oai:teses.usp.br:tde-20210729-124730
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Contribuições ao estudo de modelos com erros nas variáveisnot availableInferência EstatísticaNeste trabalho estudamos alguns modelos com erros nas variáveis. Consideramos um modelo de análise de covariância (ANCOVA) em que temos variáveis explicativas medidas com erros aditivos e também variáveis explicativas contaminadas por erros multiplicativos. Dois estimadores para os efeitos dos tratamentos são comparados em termos de eficiência relativa assintótica. Mostramos que o estimador de mínimos quadrados ordinários (que ignora os erros de medição) é o mais eficiente. Um estudo de simulação compara os méritos relativos dos dois estimadores em amostras de tamanho pequeno a moderado. Em seguida, uma abordagem de influência local para detectar os efeitos de pequenas perturbações dos dados ou do modelo é aplicada aos modelos de calibração comparativa. Tais modelos são usados tipicamente para comparar vários instrumentos ou métodos de medição e podem ser vistos tanto em uma versão funcional quanto em uma versão estrutural, como acontece com os modelos com erros nas variáveis usuais. Diferentes esquemas de perturbação são considerados e dois exemplos com dados reais ilustram a metodologia desenvolvida. Por último, estendemos o modelo de regressão linear simples para situações mais gerais onde temos erro de medição na variável explicativa e duas ou mais populações estão presentes. Identificabilidade, estimação, um teste de ajuste e influência local são investigadas. Um conjunto de dados reais é analisado de acordo com os métodos propostosnot availableBiblioteca Digitais de Teses e Dissertações da USPBolfarine, HelenoAndrade Filho, Mário de Castro2001-09-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-124730/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T12:22:02Zoai:teses.usp.br:tde-20210729-124730Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T12:22:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Contribuições ao estudo de modelos com erros nas variáveis
not available
title Contribuições ao estudo de modelos com erros nas variáveis
spellingShingle Contribuições ao estudo de modelos com erros nas variáveis
Andrade Filho, Mário de Castro
Inferência Estatística
title_short Contribuições ao estudo de modelos com erros nas variáveis
title_full Contribuições ao estudo de modelos com erros nas variáveis
title_fullStr Contribuições ao estudo de modelos com erros nas variáveis
title_full_unstemmed Contribuições ao estudo de modelos com erros nas variáveis
title_sort Contribuições ao estudo de modelos com erros nas variáveis
author Andrade Filho, Mário de Castro
author_facet Andrade Filho, Mário de Castro
author_role author
dc.contributor.none.fl_str_mv Bolfarine, Heleno
dc.contributor.author.fl_str_mv Andrade Filho, Mário de Castro
dc.subject.por.fl_str_mv Inferência Estatística
topic Inferência Estatística
description Neste trabalho estudamos alguns modelos com erros nas variáveis. Consideramos um modelo de análise de covariância (ANCOVA) em que temos variáveis explicativas medidas com erros aditivos e também variáveis explicativas contaminadas por erros multiplicativos. Dois estimadores para os efeitos dos tratamentos são comparados em termos de eficiência relativa assintótica. Mostramos que o estimador de mínimos quadrados ordinários (que ignora os erros de medição) é o mais eficiente. Um estudo de simulação compara os méritos relativos dos dois estimadores em amostras de tamanho pequeno a moderado. Em seguida, uma abordagem de influência local para detectar os efeitos de pequenas perturbações dos dados ou do modelo é aplicada aos modelos de calibração comparativa. Tais modelos são usados tipicamente para comparar vários instrumentos ou métodos de medição e podem ser vistos tanto em uma versão funcional quanto em uma versão estrutural, como acontece com os modelos com erros nas variáveis usuais. Diferentes esquemas de perturbação são considerados e dois exemplos com dados reais ilustram a metodologia desenvolvida. Por último, estendemos o modelo de regressão linear simples para situações mais gerais onde temos erro de medição na variável explicativa e duas ou mais populações estão presentes. Identificabilidade, estimação, um teste de ajuste e influência local são investigadas. Um conjunto de dados reais é analisado de acordo com os métodos propostos
publishDate 2001
dc.date.none.fl_str_mv 2001-09-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-124730/
url https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-124730/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257208348213248