Representações irredutíveis da superálgebra de jordan Kan(n)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130947/ |
Resumo: | Neste trabalho apresentamos a classificação dos bimódulos irredutíveis sobre a superálgebra de Jordan simples Kan(n) sobre um corpo algebricamente fechado F de caraterística 'DIFRENTE' 2, para todo n '> OU ='2. A classificação foi obtida trabalhando diretamente na super álgebra Kan(n), usamos a superidentidade de Jordan reescrita de várias formas: primeiro para encontrar propriedades gerais para qualquer bimódulo irredutível sobre Kan(n), depois para encontrar um elemento especial no bimódulo, e finalmente, usando as propriedades e o elemento especial, determinamos a estrutura (multiplicação) dos bimódulos procurados. Com a estrutura obtida, o trabalho final foi mostrar que de fato o bimódulo é de Jordan, para isso foi criado um critério e exemplos de superálgebras de Jordan. |
id |
USP_fa0b4d1d3936f390a55da3c85f71c958 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20220712-130947 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Representações irredutíveis da superálgebra de jordan Kan(n)not availableÁlgebras De JordanNeste trabalho apresentamos a classificação dos bimódulos irredutíveis sobre a superálgebra de Jordan simples Kan(n) sobre um corpo algebricamente fechado F de caraterística 'DIFRENTE' 2, para todo n '> OU ='2. A classificação foi obtida trabalhando diretamente na super álgebra Kan(n), usamos a superidentidade de Jordan reescrita de várias formas: primeiro para encontrar propriedades gerais para qualquer bimódulo irredutível sobre Kan(n), depois para encontrar um elemento especial no bimódulo, e finalmente, usando as propriedades e o elemento especial, determinamos a estrutura (multiplicação) dos bimódulos procurados. Com a estrutura obtida, o trabalho final foi mostrar que de fato o bimódulo é de Jordan, para isso foi criado um critério e exemplos de superálgebras de Jordan.not availableBiblioteca Digitais de Teses e Dissertações da USPChestakov, IvanSolarte, Olmer Folleco2013-12-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130947/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-07-13T20:02:45Zoai:teses.usp.br:tde-20220712-130947Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-13T20:02:45Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Representações irredutíveis da superálgebra de jordan Kan(n) not available |
title |
Representações irredutíveis da superálgebra de jordan Kan(n) |
spellingShingle |
Representações irredutíveis da superálgebra de jordan Kan(n) Solarte, Olmer Folleco Álgebras De Jordan |
title_short |
Representações irredutíveis da superálgebra de jordan Kan(n) |
title_full |
Representações irredutíveis da superálgebra de jordan Kan(n) |
title_fullStr |
Representações irredutíveis da superálgebra de jordan Kan(n) |
title_full_unstemmed |
Representações irredutíveis da superálgebra de jordan Kan(n) |
title_sort |
Representações irredutíveis da superálgebra de jordan Kan(n) |
author |
Solarte, Olmer Folleco |
author_facet |
Solarte, Olmer Folleco |
author_role |
author |
dc.contributor.none.fl_str_mv |
Chestakov, Ivan |
dc.contributor.author.fl_str_mv |
Solarte, Olmer Folleco |
dc.subject.por.fl_str_mv |
Álgebras De Jordan |
topic |
Álgebras De Jordan |
description |
Neste trabalho apresentamos a classificação dos bimódulos irredutíveis sobre a superálgebra de Jordan simples Kan(n) sobre um corpo algebricamente fechado F de caraterística 'DIFRENTE' 2, para todo n '> OU ='2. A classificação foi obtida trabalhando diretamente na super álgebra Kan(n), usamos a superidentidade de Jordan reescrita de várias formas: primeiro para encontrar propriedades gerais para qualquer bimódulo irredutível sobre Kan(n), depois para encontrar um elemento especial no bimódulo, e finalmente, usando as propriedades e o elemento especial, determinamos a estrutura (multiplicação) dos bimódulos procurados. Com a estrutura obtida, o trabalho final foi mostrar que de fato o bimódulo é de Jordan, para isso foi criado um critério e exemplos de superálgebras de Jordan. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130947/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130947/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257217499136000 |