Visual novelty detection for autonomous inspection robots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
Texto Completo: | http://repositorio.utfpr.edu.br/jspui/handle/1/644 |
Resumo: | Mobile robot applications that involve automated exploration and inspection of environments are often dependant on novelty detection, the ability to differentiate between common and uncommon perceptions. Because novelty can be anything that deviates from the normal context, we argue that in order to implement a novelty filter it is necessary to exploit the robot's sensory data from the ground up, building models of normality rather than abnormality. In this work we use unrestricted colour visual data as perceptual input to on-line incremental learning algorithms. Unlike other sensor modalities, vision can provide a variety of useful information about the environment through massive amounts of data, which often need to be reduced for realtime operation. Here we use mechanisms of visual attention to select candidate image regions to be encoded and fed to higher levels of processing, enabling the localisation of novel features within the input image frame. An extensive series of experiments using visual input, obtained by a real mobile robot interacting with laboratory and medium-scale real world environments, are used to discuss different visual novelty filter configurations. We compare performance and functionality of novelty detection mechanisms based on the Grow-When-Required neural network and incremental Principal Component Analysis. Results are assessed using both qualitative and quantitative methods, demonstrating advantages and disadvantages of each investigated approach. |
id |
UTFPR-12_76b40b4aba95f9c52cf8e717a16126ae |
---|---|
oai_identifier_str |
oai:repositorio.utfpr.edu.br:1/644 |
network_acronym_str |
UTFPR-12 |
network_name_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
repository_id_str |
|
spelling |
2013-11-12T22:52:02Z2013-11-12T22:52:02Z2006-06VIEIRA NETO, Hugo. Visual novelty detection for autonomous inspection robots. 2006. 195 f. Thesis (Doctor of Philosophy of Computer Science) – University of Essex, Inglaterra, 2006.http://repositorio.utfpr.edu.br/jspui/handle/1/644Mobile robot applications that involve automated exploration and inspection of environments are often dependant on novelty detection, the ability to differentiate between common and uncommon perceptions. Because novelty can be anything that deviates from the normal context, we argue that in order to implement a novelty filter it is necessary to exploit the robot's sensory data from the ground up, building models of normality rather than abnormality. In this work we use unrestricted colour visual data as perceptual input to on-line incremental learning algorithms. Unlike other sensor modalities, vision can provide a variety of useful information about the environment through massive amounts of data, which often need to be reduced for realtime operation. Here we use mechanisms of visual attention to select candidate image regions to be encoded and fed to higher levels of processing, enabling the localisation of novel features within the input image frame. An extensive series of experiments using visual input, obtained by a real mobile robot interacting with laboratory and medium-scale real world environments, are used to discuss different visual novelty filter configurations. We compare performance and functionality of novelty detection mechanisms based on the Grow-When-Required neural network and incremental Principal Component Analysis. Results are assessed using both qualitative and quantitative methods, demonstrating advantages and disadvantages of each investigated approach.CAPESengUniversity of EssexCuritibaDepartment of Computer ScienceRobôs móveisRobóticaVisão por computadorInteligência artificialRedes neurais (Computação)Mobile robotsRoboticsComputer visionArtificial intelligenceNeural networks (Computer science)Visual novelty detection for autonomous inspection robotsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisInglaterraDoutoradoNehmzow, UlrichVieira Neto, Hugoreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRinfo:eu-repo/semantics/openAccessTHUMBNAILUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdf.jpgUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdf.jpgGenerated Thumbnailimage/jpeg1355http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/4/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf.jpg107196884162dd95fcf5a541ede9a14eMD54ORIGINALUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdfUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdfapplication/pdf3555433http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/1/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdfbdd6948fcaaab00d5b53280de99ef4f8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81220http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/2/license.txt3cbdb04c3d289deb9dca129a3870a6e1MD52TEXTUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdf.txtUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdf.txtExtracted texttext/plain328456http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/3/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf.txtb177a854eb6734cb318b7435b168636bMD531/6442015-03-07 03:12:19.945oai:repositorio.utfpr.edu.br:1/644ICBOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgZGEgcHVibGljYT8/bywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXY/cyBkbyBQb3J0YWwgZGUgSW5mb3JtYT8/byBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXQ/bG9nb3MgZGFzIEJpYmxpb3RlY2FzIApkZXN0YSBJbnN0aXR1aT8/bywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpPz9lcyBkZSBkaXNwb25pYmlsaXphPz9vIHJlZ2lzdHJhZGFzIG5vIGl0ZW0gNCBkbyAKP1Rlcm1vIGRlIEF1dG9yaXphPz9vIHBhcmEgUHVibGljYT8/byBkZSBUcmFiYWxob3MgZGUgQ29uY2x1cz9vIGRlIEN1cnNvIGRlIEdyYWR1YT8/byBlIApFc3BlY2lhbGl6YT8/bywgRGlzc2VydGE/P2VzIGUgVGVzZXMgbm8gUG9ydGFsIGRlIEluZm9ybWE/P28gZSBub3MgQ2F0P2xvZ29zIEVsZXRyP25pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBSPywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3M/byBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2E/P28gZGEgcHJvZHU/P28gY2llbnQ/ZmljYSBicmFzaWxlaXJhLgoKICBBcyB2aWFzIG9yaWdpbmFpcyBlIGFzc2luYWRhcyBwZWxvKHMpIGF1dG9yKGVzKSBkbyA/VGVybW8gZGUgQXV0b3JpemE/P28gcGFyYSBQdWJsaWNhPz9vIGRlIApUcmFiYWxob3MgZGUgQ29uY2x1cz9vIGRlIEN1cnNvIGRlIEdyYWR1YT8/byBlIEVzcGVjaWFsaXphPz9vLCBEaXNzZXJ0YT8/ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWE/P28gZSBub3MgQ2F0P2xvZ29zIEVsZXRyP25pY29zIGRvIFNpc3RlbWEgZGUgQmlibGlvdGVjYXMgZGEgVVRGUFI/IGUgZGEgP0RlY2xhcmE/P28gCmRlIEF1dG9yaWE/IGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQz9tcHVzIG5vIHF1YWwgbyB0cmFiYWxobyBmb2kgZGVmZW5kaWRvLiAKTm8gY2FzbyBkZSBwdWJsaWNhPz9lcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljP21wdXMsIG9zIGRvY3VtZW50b3MgZmljYXI/byBzb2IgZ3VhcmRhIGRhIApCaWJsaW90ZWNhIGNvbSBhIHF1YWwgbyA/cHJpbWVpcm8gYXV0b3I/IHBvc3N1YSB2P25jdWxvLgo=Repositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2015-03-07T06:12:19Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false |
dc.title.pt_BR.fl_str_mv |
Visual novelty detection for autonomous inspection robots |
title |
Visual novelty detection for autonomous inspection robots |
spellingShingle |
Visual novelty detection for autonomous inspection robots Vieira Neto, Hugo Robôs móveis Robótica Visão por computador Inteligência artificial Redes neurais (Computação) Mobile robots Robotics Computer vision Artificial intelligence Neural networks (Computer science) |
title_short |
Visual novelty detection for autonomous inspection robots |
title_full |
Visual novelty detection for autonomous inspection robots |
title_fullStr |
Visual novelty detection for autonomous inspection robots |
title_full_unstemmed |
Visual novelty detection for autonomous inspection robots |
title_sort |
Visual novelty detection for autonomous inspection robots |
author |
Vieira Neto, Hugo |
author_facet |
Vieira Neto, Hugo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Nehmzow, Ulrich |
dc.contributor.author.fl_str_mv |
Vieira Neto, Hugo |
contributor_str_mv |
Nehmzow, Ulrich |
dc.subject.por.fl_str_mv |
Robôs móveis Robótica Visão por computador Inteligência artificial Redes neurais (Computação) Mobile robots Robotics Computer vision Artificial intelligence Neural networks (Computer science) |
topic |
Robôs móveis Robótica Visão por computador Inteligência artificial Redes neurais (Computação) Mobile robots Robotics Computer vision Artificial intelligence Neural networks (Computer science) |
description |
Mobile robot applications that involve automated exploration and inspection of environments are often dependant on novelty detection, the ability to differentiate between common and uncommon perceptions. Because novelty can be anything that deviates from the normal context, we argue that in order to implement a novelty filter it is necessary to exploit the robot's sensory data from the ground up, building models of normality rather than abnormality. In this work we use unrestricted colour visual data as perceptual input to on-line incremental learning algorithms. Unlike other sensor modalities, vision can provide a variety of useful information about the environment through massive amounts of data, which often need to be reduced for realtime operation. Here we use mechanisms of visual attention to select candidate image regions to be encoded and fed to higher levels of processing, enabling the localisation of novel features within the input image frame. An extensive series of experiments using visual input, obtained by a real mobile robot interacting with laboratory and medium-scale real world environments, are used to discuss different visual novelty filter configurations. We compare performance and functionality of novelty detection mechanisms based on the Grow-When-Required neural network and incremental Principal Component Analysis. Results are assessed using both qualitative and quantitative methods, demonstrating advantages and disadvantages of each investigated approach. |
publishDate |
2006 |
dc.date.issued.fl_str_mv |
2006-06 |
dc.date.accessioned.fl_str_mv |
2013-11-12T22:52:02Z |
dc.date.available.fl_str_mv |
2013-11-12T22:52:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
VIEIRA NETO, Hugo. Visual novelty detection for autonomous inspection robots. 2006. 195 f. Thesis (Doctor of Philosophy of Computer Science) – University of Essex, Inglaterra, 2006. |
dc.identifier.uri.fl_str_mv |
http://repositorio.utfpr.edu.br/jspui/handle/1/644 |
identifier_str_mv |
VIEIRA NETO, Hugo. Visual novelty detection for autonomous inspection robots. 2006. 195 f. Thesis (Doctor of Philosophy of Computer Science) – University of Essex, Inglaterra, 2006. |
url |
http://repositorio.utfpr.edu.br/jspui/handle/1/644 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
University of Essex Curitiba |
dc.publisher.program.fl_str_mv |
Department of Computer Science |
publisher.none.fl_str_mv |
University of Essex Curitiba |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
instacron_str |
UTFPR |
institution |
UTFPR |
reponame_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
collection |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
bitstream.url.fl_str_mv |
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/4/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf.jpg http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/1/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/2/license.txt http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/3/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf.txt |
bitstream.checksum.fl_str_mv |
107196884162dd95fcf5a541ede9a14e bdd6948fcaaab00d5b53280de99ef4f8 3cbdb04c3d289deb9dca129a3870a6e1 b177a854eb6734cb318b7435b168636b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR) |
repository.mail.fl_str_mv |
|
_version_ |
1805923153369628672 |