Visual novelty detection for autonomous inspection robots

Detalhes bibliográficos
Autor(a) principal: Vieira Neto, Hugo
Data de Publicação: 2006
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/644
Resumo: Mobile robot applications that involve automated exploration and inspection of environments are often dependant on novelty detection, the ability to differentiate between common and uncommon perceptions. Because novelty can be anything that deviates from the normal context, we argue that in order to implement a novelty filter it is necessary to exploit the robot's sensory data from the ground up, building models of normality rather than abnormality. In this work we use unrestricted colour visual data as perceptual input to on-line incremental learning algorithms. Unlike other sensor modalities, vision can provide a variety of useful information about the environment through massive amounts of data, which often need to be reduced for realtime operation. Here we use mechanisms of visual attention to select candidate image regions to be encoded and fed to higher levels of processing, enabling the localisation of novel features within the input image frame. An extensive series of experiments using visual input, obtained by a real mobile robot interacting with laboratory and medium-scale real world environments, are used to discuss different visual novelty filter configurations. We compare performance and functionality of novelty detection mechanisms based on the Grow-When-Required neural network and incremental Principal Component Analysis. Results are assessed using both qualitative and quantitative methods, demonstrating advantages and disadvantages of each investigated approach.
id UTFPR-12_76b40b4aba95f9c52cf8e717a16126ae
oai_identifier_str oai:repositorio.utfpr.edu.br:1/644
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2013-11-12T22:52:02Z2013-11-12T22:52:02Z2006-06VIEIRA NETO, Hugo. Visual novelty detection for autonomous inspection robots. 2006. 195 f. Thesis (Doctor of Philosophy of Computer Science) – University of Essex, Inglaterra, 2006.http://repositorio.utfpr.edu.br/jspui/handle/1/644Mobile robot applications that involve automated exploration and inspection of environments are often dependant on novelty detection, the ability to differentiate between common and uncommon perceptions. Because novelty can be anything that deviates from the normal context, we argue that in order to implement a novelty filter it is necessary to exploit the robot's sensory data from the ground up, building models of normality rather than abnormality. In this work we use unrestricted colour visual data as perceptual input to on-line incremental learning algorithms. Unlike other sensor modalities, vision can provide a variety of useful information about the environment through massive amounts of data, which often need to be reduced for realtime operation. Here we use mechanisms of visual attention to select candidate image regions to be encoded and fed to higher levels of processing, enabling the localisation of novel features within the input image frame. An extensive series of experiments using visual input, obtained by a real mobile robot interacting with laboratory and medium-scale real world environments, are used to discuss different visual novelty filter configurations. We compare performance and functionality of novelty detection mechanisms based on the Grow-When-Required neural network and incremental Principal Component Analysis. Results are assessed using both qualitative and quantitative methods, demonstrating advantages and disadvantages of each investigated approach.CAPESengUniversity of EssexCuritibaDepartment of Computer ScienceRobôs móveisRobóticaVisão por computadorInteligência artificialRedes neurais (Computação)Mobile robotsRoboticsComputer visionArtificial intelligenceNeural networks (Computer science)Visual novelty detection for autonomous inspection robotsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisInglaterraDoutoradoNehmzow, UlrichVieira Neto, Hugoreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRinfo:eu-repo/semantics/openAccessTHUMBNAILUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdf.jpgUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdf.jpgGenerated Thumbnailimage/jpeg1355http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/4/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf.jpg107196884162dd95fcf5a541ede9a14eMD54ORIGINALUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdfUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdfapplication/pdf3555433http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/1/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdfbdd6948fcaaab00d5b53280de99ef4f8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81220http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/2/license.txt3cbdb04c3d289deb9dca129a3870a6e1MD52TEXTUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdf.txtUOE_COMPUTER SCIENCE_D_Vieira Neto, Hugo_2006.pdf.txtExtracted texttext/plain328456http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/3/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf.txtb177a854eb6734cb318b7435b168636bMD531/6442015-03-07 03:12:19.945oai:repositorio.utfpr.edu.br:1/644ICBOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgZGEgcHVibGljYT8/bywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXY/cyBkbyBQb3J0YWwgZGUgSW5mb3JtYT8/byBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXQ/bG9nb3MgZGFzIEJpYmxpb3RlY2FzIApkZXN0YSBJbnN0aXR1aT8/bywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpPz9lcyBkZSBkaXNwb25pYmlsaXphPz9vIHJlZ2lzdHJhZGFzIG5vIGl0ZW0gNCBkbyAKP1Rlcm1vIGRlIEF1dG9yaXphPz9vIHBhcmEgUHVibGljYT8/byBkZSBUcmFiYWxob3MgZGUgQ29uY2x1cz9vIGRlIEN1cnNvIGRlIEdyYWR1YT8/byBlIApFc3BlY2lhbGl6YT8/bywgRGlzc2VydGE/P2VzIGUgVGVzZXMgbm8gUG9ydGFsIGRlIEluZm9ybWE/P28gZSBub3MgQ2F0P2xvZ29zIEVsZXRyP25pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBSPywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3M/byBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2E/P28gZGEgcHJvZHU/P28gY2llbnQ/ZmljYSBicmFzaWxlaXJhLgoKICBBcyB2aWFzIG9yaWdpbmFpcyBlIGFzc2luYWRhcyBwZWxvKHMpIGF1dG9yKGVzKSBkbyA/VGVybW8gZGUgQXV0b3JpemE/P28gcGFyYSBQdWJsaWNhPz9vIGRlIApUcmFiYWxob3MgZGUgQ29uY2x1cz9vIGRlIEN1cnNvIGRlIEdyYWR1YT8/byBlIEVzcGVjaWFsaXphPz9vLCBEaXNzZXJ0YT8/ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWE/P28gZSBub3MgQ2F0P2xvZ29zIEVsZXRyP25pY29zIGRvIFNpc3RlbWEgZGUgQmlibGlvdGVjYXMgZGEgVVRGUFI/IGUgZGEgP0RlY2xhcmE/P28gCmRlIEF1dG9yaWE/IGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQz9tcHVzIG5vIHF1YWwgbyB0cmFiYWxobyBmb2kgZGVmZW5kaWRvLiAKTm8gY2FzbyBkZSBwdWJsaWNhPz9lcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljP21wdXMsIG9zIGRvY3VtZW50b3MgZmljYXI/byBzb2IgZ3VhcmRhIGRhIApCaWJsaW90ZWNhIGNvbSBhIHF1YWwgbyA/cHJpbWVpcm8gYXV0b3I/IHBvc3N1YSB2P25jdWxvLgo=Repositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2015-03-07T06:12:19Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Visual novelty detection for autonomous inspection robots
title Visual novelty detection for autonomous inspection robots
spellingShingle Visual novelty detection for autonomous inspection robots
Vieira Neto, Hugo
Robôs móveis
Robótica
Visão por computador
Inteligência artificial
Redes neurais (Computação)
Mobile robots
Robotics
Computer vision
Artificial intelligence
Neural networks (Computer science)
title_short Visual novelty detection for autonomous inspection robots
title_full Visual novelty detection for autonomous inspection robots
title_fullStr Visual novelty detection for autonomous inspection robots
title_full_unstemmed Visual novelty detection for autonomous inspection robots
title_sort Visual novelty detection for autonomous inspection robots
author Vieira Neto, Hugo
author_facet Vieira Neto, Hugo
author_role author
dc.contributor.advisor1.fl_str_mv Nehmzow, Ulrich
dc.contributor.author.fl_str_mv Vieira Neto, Hugo
contributor_str_mv Nehmzow, Ulrich
dc.subject.por.fl_str_mv Robôs móveis
Robótica
Visão por computador
Inteligência artificial
Redes neurais (Computação)
Mobile robots
Robotics
Computer vision
Artificial intelligence
Neural networks (Computer science)
topic Robôs móveis
Robótica
Visão por computador
Inteligência artificial
Redes neurais (Computação)
Mobile robots
Robotics
Computer vision
Artificial intelligence
Neural networks (Computer science)
description Mobile robot applications that involve automated exploration and inspection of environments are often dependant on novelty detection, the ability to differentiate between common and uncommon perceptions. Because novelty can be anything that deviates from the normal context, we argue that in order to implement a novelty filter it is necessary to exploit the robot's sensory data from the ground up, building models of normality rather than abnormality. In this work we use unrestricted colour visual data as perceptual input to on-line incremental learning algorithms. Unlike other sensor modalities, vision can provide a variety of useful information about the environment through massive amounts of data, which often need to be reduced for realtime operation. Here we use mechanisms of visual attention to select candidate image regions to be encoded and fed to higher levels of processing, enabling the localisation of novel features within the input image frame. An extensive series of experiments using visual input, obtained by a real mobile robot interacting with laboratory and medium-scale real world environments, are used to discuss different visual novelty filter configurations. We compare performance and functionality of novelty detection mechanisms based on the Grow-When-Required neural network and incremental Principal Component Analysis. Results are assessed using both qualitative and quantitative methods, demonstrating advantages and disadvantages of each investigated approach.
publishDate 2006
dc.date.issued.fl_str_mv 2006-06
dc.date.accessioned.fl_str_mv 2013-11-12T22:52:02Z
dc.date.available.fl_str_mv 2013-11-12T22:52:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VIEIRA NETO, Hugo. Visual novelty detection for autonomous inspection robots. 2006. 195 f. Thesis (Doctor of Philosophy of Computer Science) – University of Essex, Inglaterra, 2006.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/644
identifier_str_mv VIEIRA NETO, Hugo. Visual novelty detection for autonomous inspection robots. 2006. 195 f. Thesis (Doctor of Philosophy of Computer Science) – University of Essex, Inglaterra, 2006.
url http://repositorio.utfpr.edu.br/jspui/handle/1/644
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv University of Essex
Curitiba
dc.publisher.program.fl_str_mv Department of Computer Science
publisher.none.fl_str_mv University of Essex
Curitiba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/4/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf.jpg
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/1/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/2/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/644/3/UOE_COMPUTER%20SCIENCE_D_Vieira%20Neto%2c%20Hugo_2006.pdf.txt
bitstream.checksum.fl_str_mv 107196884162dd95fcf5a541ede9a14e
bdd6948fcaaab00d5b53280de99ef4f8
3cbdb04c3d289deb9dca129a3870a6e1
b177a854eb6734cb318b7435b168636b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923153369628672