About periodic and quasi-periodic orbits of a new type for twist maps of the torus

Detalhes bibliográficos
Autor(a) principal: ADDAS-ZANATA,SALVADOR
Data de Publicação: 2002
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000100003
Resumo: We prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's). These orbits have a non-zero "vertical rotation number'' (V.R.N.), in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 < b < a. And as a consequence of the previous results we get that a twist map of the torus with no R.I.C's has positive topological entropy, which is a very classical result. In the end of the paper we present some applications and examples, like the Standard map, such that our results apply.
id ABC-1_58a3f936cdfc3a23fb822256256d654e
oai_identifier_str oai:scielo:S0001-37652002000100003
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling About periodic and quasi-periodic orbits of a new type for twist maps of the torustwist mapsrotational invariant circlestopological methodsvertical rotation numberNielsen-Thurston theoryWe prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's). These orbits have a non-zero "vertical rotation number'' (V.R.N.), in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 < b < a. And as a consequence of the previous results we get that a twist map of the torus with no R.I.C's has positive topological entropy, which is a very classical result. In the end of the paper we present some applications and examples, like the Standard map, such that our results apply.Academia Brasileira de Ciências2002-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000100003Anais da Academia Brasileira de Ciências v.74 n.1 2002reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652002000100003info:eu-repo/semantics/openAccessADDAS-ZANATA,SALVADOReng2002-05-24T00:00:00Zoai:scielo:S0001-37652002000100003Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2002-05-24T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv About periodic and quasi-periodic orbits of a new type for twist maps of the torus
title About periodic and quasi-periodic orbits of a new type for twist maps of the torus
spellingShingle About periodic and quasi-periodic orbits of a new type for twist maps of the torus
ADDAS-ZANATA,SALVADOR
twist maps
rotational invariant circles
topological methods
vertical rotation number
Nielsen-Thurston theory
title_short About periodic and quasi-periodic orbits of a new type for twist maps of the torus
title_full About periodic and quasi-periodic orbits of a new type for twist maps of the torus
title_fullStr About periodic and quasi-periodic orbits of a new type for twist maps of the torus
title_full_unstemmed About periodic and quasi-periodic orbits of a new type for twist maps of the torus
title_sort About periodic and quasi-periodic orbits of a new type for twist maps of the torus
author ADDAS-ZANATA,SALVADOR
author_facet ADDAS-ZANATA,SALVADOR
author_role author
dc.contributor.author.fl_str_mv ADDAS-ZANATA,SALVADOR
dc.subject.por.fl_str_mv twist maps
rotational invariant circles
topological methods
vertical rotation number
Nielsen-Thurston theory
topic twist maps
rotational invariant circles
topological methods
vertical rotation number
Nielsen-Thurston theory
description We prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's). These orbits have a non-zero "vertical rotation number'' (V.R.N.), in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 < b < a. And as a consequence of the previous results we get that a twist map of the torus with no R.I.C's has positive topological entropy, which is a very classical result. In the end of the paper we present some applications and examples, like the Standard map, such that our results apply.
publishDate 2002
dc.date.none.fl_str_mv 2002-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000100003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000100003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652002000100003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.74 n.1 2002
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302855738556416