About periodic and quasi-periodic orbits of a new type for twist maps of the torus
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000100003 |
Resumo: | We prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's). These orbits have a non-zero "vertical rotation number'' (V.R.N.), in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 < b < a. And as a consequence of the previous results we get that a twist map of the torus with no R.I.C's has positive topological entropy, which is a very classical result. In the end of the paper we present some applications and examples, like the Standard map, such that our results apply. |
id |
ABC-1_58a3f936cdfc3a23fb822256256d654e |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652002000100003 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
About periodic and quasi-periodic orbits of a new type for twist maps of the torustwist mapsrotational invariant circlestopological methodsvertical rotation numberNielsen-Thurston theoryWe prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's). These orbits have a non-zero "vertical rotation number'' (V.R.N.), in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 < b < a. And as a consequence of the previous results we get that a twist map of the torus with no R.I.C's has positive topological entropy, which is a very classical result. In the end of the paper we present some applications and examples, like the Standard map, such that our results apply.Academia Brasileira de Ciências2002-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000100003Anais da Academia Brasileira de Ciências v.74 n.1 2002reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652002000100003info:eu-repo/semantics/openAccessADDAS-ZANATA,SALVADOReng2002-05-24T00:00:00Zoai:scielo:S0001-37652002000100003Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2002-05-24T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
About periodic and quasi-periodic orbits of a new type for twist maps of the torus |
title |
About periodic and quasi-periodic orbits of a new type for twist maps of the torus |
spellingShingle |
About periodic and quasi-periodic orbits of a new type for twist maps of the torus ADDAS-ZANATA,SALVADOR twist maps rotational invariant circles topological methods vertical rotation number Nielsen-Thurston theory |
title_short |
About periodic and quasi-periodic orbits of a new type for twist maps of the torus |
title_full |
About periodic and quasi-periodic orbits of a new type for twist maps of the torus |
title_fullStr |
About periodic and quasi-periodic orbits of a new type for twist maps of the torus |
title_full_unstemmed |
About periodic and quasi-periodic orbits of a new type for twist maps of the torus |
title_sort |
About periodic and quasi-periodic orbits of a new type for twist maps of the torus |
author |
ADDAS-ZANATA,SALVADOR |
author_facet |
ADDAS-ZANATA,SALVADOR |
author_role |
author |
dc.contributor.author.fl_str_mv |
ADDAS-ZANATA,SALVADOR |
dc.subject.por.fl_str_mv |
twist maps rotational invariant circles topological methods vertical rotation number Nielsen-Thurston theory |
topic |
twist maps rotational invariant circles topological methods vertical rotation number Nielsen-Thurston theory |
description |
We prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's). These orbits have a non-zero "vertical rotation number'' (V.R.N.), in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 < b < a. And as a consequence of the previous results we get that a twist map of the torus with no R.I.C's has positive topological entropy, which is a very classical result. In the end of the paper we present some applications and examples, like the Standard map, such that our results apply. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000100003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000100003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652002000100003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.74 n.1 2002 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302855738556416 |