Trust and distrust in big data recommendation agents
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/29465 |
Resumo: | The internet platform evolution, the new technologies for communication and monitoring, as well as the emergence of the social media phenomenon enable the generation, collection and exchange of a vast amount of data from a variety of sources, e.g., mobile devices, sensors, downloaded books, games, sound, and images (Aggarwal 2016). Daily, these users share their preferences, opinions, friends, and lifestyles, providing a rich source of information about their behavior and preferences, challenging RAs to deal with this amount of data to keep giving good recommendations to users. Now, RAs must include data from external sources such as user’s social connection information (e.g., close friends, colleagues, schoolmates, influencers, and brand preferences) to boost the elicitation of consumers' needs in order to suggest products that best fit consumer interests, evolving to big data recommendation agents. Extant studies have shown that customers need to trust in the RA before using it. However, despite the fact that there are many discussions about trust in the IS literature, only a few addresses the problem of trust in the context of big data and analytics. Few papers associated with big data and analytics have a secondary concern about the themes of trust and distrust. An experiment with four hundred students was performed to fulfill this gap, assessing the degree of trust and distrust in Big Data Recommendation Agents – BDRA, in the selection of an exchange program (e.g., study abroad). We developed three papers to cover: (1) the antecedents of trust and distrust in BDRA, (2) the contextual influence of trust beliefs in the adoption of a big data recommendation agents, and (3) the power of resistance - status quo bias on BDRA distrust beliefs and its consequents on perceived enjoyment and perceived usefulness. Through these three different studies results, it was possible to extend trust, distrust, user acceptance, and user resistance theories by adding new constructs, validating prior literature and including distrust and big data into recommendation agent literature. The study also built and tested a nomological network-related trust and distrust in big data recommendation agents. |
id |
FGV_5e404f7d273dbd8bf37f3dfc75315ad2 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/29465 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Moraes, Heverton Roberto de Oliveira Cesar deEscolasBrown, SusanKugler, José Luiz CarlosTourinho, Ana Lucia de QueirozSanchez, Otávio Próspero2020-07-16T18:09:23Z2020-07-16T18:09:23Z2020-10-26https://hdl.handle.net/10438/29465The internet platform evolution, the new technologies for communication and monitoring, as well as the emergence of the social media phenomenon enable the generation, collection and exchange of a vast amount of data from a variety of sources, e.g., mobile devices, sensors, downloaded books, games, sound, and images (Aggarwal 2016). Daily, these users share their preferences, opinions, friends, and lifestyles, providing a rich source of information about their behavior and preferences, challenging RAs to deal with this amount of data to keep giving good recommendations to users. Now, RAs must include data from external sources such as user’s social connection information (e.g., close friends, colleagues, schoolmates, influencers, and brand preferences) to boost the elicitation of consumers' needs in order to suggest products that best fit consumer interests, evolving to big data recommendation agents. Extant studies have shown that customers need to trust in the RA before using it. However, despite the fact that there are many discussions about trust in the IS literature, only a few addresses the problem of trust in the context of big data and analytics. Few papers associated with big data and analytics have a secondary concern about the themes of trust and distrust. An experiment with four hundred students was performed to fulfill this gap, assessing the degree of trust and distrust in Big Data Recommendation Agents – BDRA, in the selection of an exchange program (e.g., study abroad). We developed three papers to cover: (1) the antecedents of trust and distrust in BDRA, (2) the contextual influence of trust beliefs in the adoption of a big data recommendation agents, and (3) the power of resistance - status quo bias on BDRA distrust beliefs and its consequents on perceived enjoyment and perceived usefulness. Through these three different studies results, it was possible to extend trust, distrust, user acceptance, and user resistance theories by adding new constructs, validating prior literature and including distrust and big data into recommendation agent literature. The study also built and tested a nomological network-related trust and distrust in big data recommendation agents.A evolução da plataforma de Internet, as novas tecnologias de comunicação e monitoramento, bem como o surgimento do fenômeno das mídias sociais, permitem a geração, a coleta e o intercâmbio de uma vasta quantidade de dados de várias fontes, como dispositivos móveis, sensores, baixados livros, jogos, sons e imagens. Diariamente, esses usuários compartilham suas preferências, opiniões, amigos e estilos de vida, fornecendo uma rica fonte de informações sobre seu comportamento e preferências, desafiando os RAs a lidar com essa quantidade de dados e continuar fornecendo boas recomendações aos usuários. Agora, os RAs devem incluir dados de fontes externas, como informações de conexão social do usuário (por exemplo, amigos próximos, colegas, colegas de escola, influenciadores e preferências de marca) para aumentar a captura e entendendimento das necessidades dos consumidores, a fim de sugerir produtos que melhor atendam aos interesses dos consumidores, evoluindo para agentes de recomendação de big data. Estudos existentes mostraram que os clientes precisam confiar no RA antes de usá-lo. No entanto, apesar do fato de haver muitas discussões sobre confiança na literatura de SI, apenas algumas abordam o problema da confiança no contexto de big data e analytics. Poucos trabalhos associados a big data e analytics têm uma preocupação secundária sobre os temas de confiança e desconfiança. Para preencher essa lacuna, foi realizado um experimento com quatrocentos alunos para avaliar o grau de confiança e desconfiança nos Agentes de Recomendação de Big Data - BDRA. No contexto da seleção de um programa de intercâmbio (por exemplo, estudar no exterior). Desenvolvemos três artigos que cobrem: (1) os antecedentes de confiança e desconfiança no BDRA, (2) a influência contextual das crenças de confiança na adoção de agentes de recomendação de big data e (3) o poder das crenças de desconfiança do BDRA no conseqüentes usando a lente teórica de aceitação e resistência do usuário. Através desses três resultados diferentes de estudos, foi possível estender as teorias de confiança, desconfiança, aceitação do usuário e resistência do usuário, adicionando novos constructos, validando a literatura anterior e incluindo desconfiança e big data na literatura de Agentes de Recomendação. O estudo também construiu e testou um modelo nomológico de confiança e desconfiança relacionada à agentes de recomendação de big data - BDRA.engTrustDistrustBig dataRecommendation agentsAlgorithm innovativenessUser acceptanceUser resistanceStatus quo biasTecnologia da informaçãoSistemas de suporte de decisãoComportamento do consumidorConfiança do consumidorAdministração de empresasBig dataTecnologia da informaçãoSistemas de suporte de decisãoComportamento do consumidorConfiança do consumidorTrust and distrust in big data recommendation agentsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALThesis_Hmoraes_final.pdfThesis_Hmoraes_final.pdfPDFapplication/pdf2238151https://repositorio.fgv.br/bitstreams/8e2a6662-bee4-4be6-9107-fbca8ad77234/downloadfaf17df082ba44cddbdf89a7cefec05cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/dbc0266e-00ae-446f-95b0-18fcbbb18fce/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTThesis_Hmoraes_final.pdf.txtThesis_Hmoraes_final.pdf.txtExtracted texttext/plain100434https://repositorio.fgv.br/bitstreams/1c017110-f128-4824-81c9-6dd2b72f32d5/download3a83fc7018264b2a768a3b57b3de1376MD55THUMBNAILThesis_Hmoraes_final.pdf.jpgThesis_Hmoraes_final.pdf.jpgGenerated Thumbnailimage/jpeg2338https://repositorio.fgv.br/bitstreams/9ce97148-c25f-4039-a1d8-acefdb35c003/downloadfb8ba58d34db75e9fb604ff8822b2832MD5610438/294652024-10-08 13:54:35.611embargooai:repositorio.fgv.br:10438/29465https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-10-08T13:54:35Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Trust and distrust in big data recommendation agents |
title |
Trust and distrust in big data recommendation agents |
spellingShingle |
Trust and distrust in big data recommendation agents Moraes, Heverton Roberto de Oliveira Cesar de Trust Distrust Big data Recommendation agents Algorithm innovativeness User acceptance User resistance Status quo bias Tecnologia da informação Sistemas de suporte de decisão Comportamento do consumidor Confiança do consumidor Administração de empresas Big data Tecnologia da informação Sistemas de suporte de decisão Comportamento do consumidor Confiança do consumidor |
title_short |
Trust and distrust in big data recommendation agents |
title_full |
Trust and distrust in big data recommendation agents |
title_fullStr |
Trust and distrust in big data recommendation agents |
title_full_unstemmed |
Trust and distrust in big data recommendation agents |
title_sort |
Trust and distrust in big data recommendation agents |
author |
Moraes, Heverton Roberto de Oliveira Cesar de |
author_facet |
Moraes, Heverton Roberto de Oliveira Cesar de |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas |
dc.contributor.member.none.fl_str_mv |
Brown, Susan Kugler, José Luiz Carlos Tourinho, Ana Lucia de Queiroz |
dc.contributor.author.fl_str_mv |
Moraes, Heverton Roberto de Oliveira Cesar de |
dc.contributor.advisor1.fl_str_mv |
Sanchez, Otávio Próspero |
contributor_str_mv |
Sanchez, Otávio Próspero |
dc.subject.eng.fl_str_mv |
Trust Distrust Big data Recommendation agents Algorithm innovativeness User acceptance User resistance Status quo bias |
topic |
Trust Distrust Big data Recommendation agents Algorithm innovativeness User acceptance User resistance Status quo bias Tecnologia da informação Sistemas de suporte de decisão Comportamento do consumidor Confiança do consumidor Administração de empresas Big data Tecnologia da informação Sistemas de suporte de decisão Comportamento do consumidor Confiança do consumidor |
dc.subject.por.fl_str_mv |
Tecnologia da informação Sistemas de suporte de decisão Comportamento do consumidor Confiança do consumidor |
dc.subject.area.por.fl_str_mv |
Administração de empresas |
dc.subject.bibliodata.por.fl_str_mv |
Big data Tecnologia da informação Sistemas de suporte de decisão Comportamento do consumidor Confiança do consumidor |
description |
The internet platform evolution, the new technologies for communication and monitoring, as well as the emergence of the social media phenomenon enable the generation, collection and exchange of a vast amount of data from a variety of sources, e.g., mobile devices, sensors, downloaded books, games, sound, and images (Aggarwal 2016). Daily, these users share their preferences, opinions, friends, and lifestyles, providing a rich source of information about their behavior and preferences, challenging RAs to deal with this amount of data to keep giving good recommendations to users. Now, RAs must include data from external sources such as user’s social connection information (e.g., close friends, colleagues, schoolmates, influencers, and brand preferences) to boost the elicitation of consumers' needs in order to suggest products that best fit consumer interests, evolving to big data recommendation agents. Extant studies have shown that customers need to trust in the RA before using it. However, despite the fact that there are many discussions about trust in the IS literature, only a few addresses the problem of trust in the context of big data and analytics. Few papers associated with big data and analytics have a secondary concern about the themes of trust and distrust. An experiment with four hundred students was performed to fulfill this gap, assessing the degree of trust and distrust in Big Data Recommendation Agents – BDRA, in the selection of an exchange program (e.g., study abroad). We developed three papers to cover: (1) the antecedents of trust and distrust in BDRA, (2) the contextual influence of trust beliefs in the adoption of a big data recommendation agents, and (3) the power of resistance - status quo bias on BDRA distrust beliefs and its consequents on perceived enjoyment and perceived usefulness. Through these three different studies results, it was possible to extend trust, distrust, user acceptance, and user resistance theories by adding new constructs, validating prior literature and including distrust and big data into recommendation agent literature. The study also built and tested a nomological network-related trust and distrust in big data recommendation agents. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-07-16T18:09:23Z |
dc.date.available.fl_str_mv |
2020-07-16T18:09:23Z |
dc.date.issued.fl_str_mv |
2020-10-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/29465 |
url |
https://hdl.handle.net/10438/29465 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/8e2a6662-bee4-4be6-9107-fbca8ad77234/download https://repositorio.fgv.br/bitstreams/dbc0266e-00ae-446f-95b0-18fcbbb18fce/download https://repositorio.fgv.br/bitstreams/1c017110-f128-4824-81c9-6dd2b72f32d5/download https://repositorio.fgv.br/bitstreams/9ce97148-c25f-4039-a1d8-acefdb35c003/download |
bitstream.checksum.fl_str_mv |
faf17df082ba44cddbdf89a7cefec05c dfb340242cced38a6cca06c627998fa1 3a83fc7018264b2a768a3b57b3de1376 fb8ba58d34db75e9fb604ff8822b2832 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797643249254400 |