Contributions to the filtering theory of continuous-time markovian jump linear systems

Detalhes bibliográficos
Autor(a) principal: Vergés, Fortià Vila
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do LNCC
Texto Completo: https://tede.lncc.br/handle/tede/366
Resumo: Stochastic differential equations with Markovian jump parameters constitute one of the most important class of hybrid dynamical systems, which has been extensively used for the modeling of dynamical systems which are subject to abrupt changes in their structure. The abrupt changes can be due, for instance, to abrupt environmental disturbances, component failure, volatility in economic systems, changes in subsystem interconnections, etc. This can be found, for instance, in aircraft control systems, robot systems, large flexible structures for the space station, etc. We shall be particularly interested in the class, which is dubbed in the literature as the class of Markov jump linear systems (MJLS) in which the jump mechanism is modeled by a Markov process, also known in the literature as the operation mode. We address the filtering problem for the operation mode in three different scenarios: (1) when the operation mode is detected via a noisy observation (the so-called hidden Markov processes); (2) the MJLS when the system signal is observable but not the operation mode, and (3) the MJLS when neither the system signal nor the operation mode is observable. For the first two scenarios, there exist in the literature finite optimal non-linear filter and infinite for the third. The main hindrances with the non-linear filter results are: (i) the non-linear filter performance depends heavily upon the stochastic numerical method used; (ii) it is not possible to devise a stationary version of the non-linear filters; and (iii) in the context of the control problem with partial observation of operation mode it introduces a great deal of nonlinearity in the Hamilton-Jacobi-Belman equation, which makes it difficult to get an explicit closed solution for the control problem. Motivated in part by this, the main contribution of this thesis is to devise the optimal linear filter for the operation mode for all the above mentioned scenarios. Besides, via the convergence study of the solution of a certain Riccati differential equation, to derive the associated stationary filter. In addition, relying on Murayamas stochastic numerical method and the results of Yuan and Mao, we carry out and analyze exhaustive simulations of all the filters devised in the thesis to illustrate their performance.
id LNCC_6d7372fe736d5f9e66af0e9eee489087
oai_identifier_str oai:tede-server.lncc.br:tede/366
network_acronym_str LNCC
network_name_str Biblioteca Digital de Teses e Dissertações do LNCC
repository_id_str
spelling Contributions to the filtering theory of continuous-time markovian jump linear systemsMarkov, Processos deSistemas lineares de controleSistemas dinâmicos linearesFiltros (Matemática)Equações DiferenciaisCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISEStochastic differential equations with Markovian jump parameters constitute one of the most important class of hybrid dynamical systems, which has been extensively used for the modeling of dynamical systems which are subject to abrupt changes in their structure. The abrupt changes can be due, for instance, to abrupt environmental disturbances, component failure, volatility in economic systems, changes in subsystem interconnections, etc. This can be found, for instance, in aircraft control systems, robot systems, large flexible structures for the space station, etc. We shall be particularly interested in the class, which is dubbed in the literature as the class of Markov jump linear systems (MJLS) in which the jump mechanism is modeled by a Markov process, also known in the literature as the operation mode. We address the filtering problem for the operation mode in three different scenarios: (1) when the operation mode is detected via a noisy observation (the so-called hidden Markov processes); (2) the MJLS when the system signal is observable but not the operation mode, and (3) the MJLS when neither the system signal nor the operation mode is observable. For the first two scenarios, there exist in the literature finite optimal non-linear filter and infinite for the third. The main hindrances with the non-linear filter results are: (i) the non-linear filter performance depends heavily upon the stochastic numerical method used; (ii) it is not possible to devise a stationary version of the non-linear filters; and (iii) in the context of the control problem with partial observation of operation mode it introduces a great deal of nonlinearity in the Hamilton-Jacobi-Belman equation, which makes it difficult to get an explicit closed solution for the control problem. Motivated in part by this, the main contribution of this thesis is to devise the optimal linear filter for the operation mode for all the above mentioned scenarios. Besides, via the convergence study of the solution of a certain Riccati differential equation, to derive the associated stationary filter. In addition, relying on Murayamas stochastic numerical method and the results of Yuan and Mao, we carry out and analyze exhaustive simulations of all the filters devised in the thesis to illustrate their performance.As equações diferenciais estocásticas com salto Markoviano constituem uma classe impor- tante de sistemas dinâmicos, e tem sido muito usada para modelar sistemas sujeitos a mudanças abruptas na sua estrutura. Essas mudanças podem ser devido a, por exemplo, perturbações ambientais, falhas em componentes, volatilidade em sistemas económicos, mudanças abruptas em interconexões de subsistemas, etc. Estas falhas podem ser encon- tradas em sistemas de controle para aeronaves, sistemas robóticos, estruturas grandes e flexíveis em estações espaciais, etc. Nessa tese, estamos especialmente interessados na classe de sistemas que é conhecida na literatura como sistemas lineares com salto Markoviano (SLSM), em que o mecanismo de salto é modelado por uma cadeia de Markov, que é também conhecido na literatura como modo de operação do sistema. Estudamos o problema de filtragem para o modo de operação em três cenários: (1) o caso clássico conhecido na literatura como hidden Markov model; (2) o caso de SLSM com observação parcial do modo de operação; (3) o caso de SLSM com observações parciais tanto do estado como do modo de operação. Existe atualmente na literatura filtros ótimos não lineares finitos para os dois primeiros cenários e infinito para o último cenário. Os principais entraves dos filtros ótimos não lineares são: (i) a performance depende fortemente do método numérico estocástico usado; (ii) a grande dificuldade de obter a sua versão estacionaria e; (iii) no contexto de controle ótimo para SLSM, com observações parciais do modo de operação, introduz não-linearidades na equação de Hamilton-Jacobi-Belman, fazendo com que seja muito complexo obter uma solução fechada para o problema de controle. Motivado em parte por isso, o principal objetivo dessa tese é deduzir o filtro ótimo linear para o modo de operação em todos os cenários acima mencionados. Além disso, mediante o estudo de convergência de uma certa classe de equações diferenciais de Riccati, obter os respectivos filtros estacionários. Finalmente, usando o método numérico para equações diferenciais estocasticas de Euler-Murayama e o resultado de Yuan e Mao, realizamos e analisamos uma grande variedade de simulações para ilustrar a performance dos filtros obtidos nesta tese.Laboratório Nacional de Computação CientíficaCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)BrasilLNCCPrograma de Pós-Graduação em Modelagem ComputacionalFragoso, Marcelo DutraFragoso, Marcelo DutraTodorov, Marcos GarciaVal, João Bosco Ribeiro doVargas, Alessandro do NascimentoVergés, Fortià Vila2023-05-02T18:20:42Z2023-02-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfVERGÉS, F. V. Contributions to the filtering theory of continuous-time markovian jump linear systems. 2023. 191 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2023.https://tede.lncc.br/handle/tede/366enghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCC2023-05-03T04:49:45Zoai:tede-server.lncc.br:tede/366Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2023-05-03T04:49:45Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false
dc.title.none.fl_str_mv Contributions to the filtering theory of continuous-time markovian jump linear systems
title Contributions to the filtering theory of continuous-time markovian jump linear systems
spellingShingle Contributions to the filtering theory of continuous-time markovian jump linear systems
Vergés, Fortià Vila
Markov, Processos de
Sistemas lineares de controle
Sistemas dinâmicos lineares
Filtros (Matemática)
Equações Diferenciais
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE
title_short Contributions to the filtering theory of continuous-time markovian jump linear systems
title_full Contributions to the filtering theory of continuous-time markovian jump linear systems
title_fullStr Contributions to the filtering theory of continuous-time markovian jump linear systems
title_full_unstemmed Contributions to the filtering theory of continuous-time markovian jump linear systems
title_sort Contributions to the filtering theory of continuous-time markovian jump linear systems
author Vergés, Fortià Vila
author_facet Vergés, Fortià Vila
author_role author
dc.contributor.none.fl_str_mv Fragoso, Marcelo Dutra
Fragoso, Marcelo Dutra
Todorov, Marcos Garcia
Val, João Bosco Ribeiro do
Vargas, Alessandro do Nascimento
dc.contributor.author.fl_str_mv Vergés, Fortià Vila
dc.subject.por.fl_str_mv Markov, Processos de
Sistemas lineares de controle
Sistemas dinâmicos lineares
Filtros (Matemática)
Equações Diferenciais
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE
topic Markov, Processos de
Sistemas lineares de controle
Sistemas dinâmicos lineares
Filtros (Matemática)
Equações Diferenciais
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE
description Stochastic differential equations with Markovian jump parameters constitute one of the most important class of hybrid dynamical systems, which has been extensively used for the modeling of dynamical systems which are subject to abrupt changes in their structure. The abrupt changes can be due, for instance, to abrupt environmental disturbances, component failure, volatility in economic systems, changes in subsystem interconnections, etc. This can be found, for instance, in aircraft control systems, robot systems, large flexible structures for the space station, etc. We shall be particularly interested in the class, which is dubbed in the literature as the class of Markov jump linear systems (MJLS) in which the jump mechanism is modeled by a Markov process, also known in the literature as the operation mode. We address the filtering problem for the operation mode in three different scenarios: (1) when the operation mode is detected via a noisy observation (the so-called hidden Markov processes); (2) the MJLS when the system signal is observable but not the operation mode, and (3) the MJLS when neither the system signal nor the operation mode is observable. For the first two scenarios, there exist in the literature finite optimal non-linear filter and infinite for the third. The main hindrances with the non-linear filter results are: (i) the non-linear filter performance depends heavily upon the stochastic numerical method used; (ii) it is not possible to devise a stationary version of the non-linear filters; and (iii) in the context of the control problem with partial observation of operation mode it introduces a great deal of nonlinearity in the Hamilton-Jacobi-Belman equation, which makes it difficult to get an explicit closed solution for the control problem. Motivated in part by this, the main contribution of this thesis is to devise the optimal linear filter for the operation mode for all the above mentioned scenarios. Besides, via the convergence study of the solution of a certain Riccati differential equation, to derive the associated stationary filter. In addition, relying on Murayamas stochastic numerical method and the results of Yuan and Mao, we carry out and analyze exhaustive simulations of all the filters devised in the thesis to illustrate their performance.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-02T18:20:42Z
2023-02-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv VERGÉS, F. V. Contributions to the filtering theory of continuous-time markovian jump linear systems. 2023. 191 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2023.
https://tede.lncc.br/handle/tede/366
identifier_str_mv VERGÉS, F. V. Contributions to the filtering theory of continuous-time markovian jump linear systems. 2023. 191 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2023.
url https://tede.lncc.br/handle/tede/366
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do LNCC
instname:Laboratório Nacional de Computação Científica (LNCC)
instacron:LNCC
instname_str Laboratório Nacional de Computação Científica (LNCC)
instacron_str LNCC
institution LNCC
reponame_str Biblioteca Digital de Teses e Dissertações do LNCC
collection Biblioteca Digital de Teses e Dissertações do LNCC
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)
repository.mail.fl_str_mv library@lncc.br||library@lncc.br
_version_ 1816081207332438016