Combustion analysis on a CFM56-3 engine
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/8325 |
Resumo: | The more fuel efficient an engine is, the less fuel is needed to get from point A to point B and the less Greenhouse gases will be produced. In spite of being a major source of carbon dioxide, gas turbine engines lead the aircraft propulsion systems globally and will probably continue for the next decades. Thus, one of the most immediate ways to go green on the skies is by advancing their performance. Nontheless, GTE’s are one of the most complex engineering problems, as they rely on hundreds of parameters that can be tweaked and result in a better configuration. However, we have computers and softwares that allow us to test engine concepts. This study consisted in a numerical analyses of the combustion of Jet-A in the annular combustor of the CFM56-3 engine, through two different turbulence models. The geometry used was ¼ of the engine constructed by Jonas Oliveira by performing a 3D scan on a real size combustor. This geometry was imported and prepared in a CFD software, CONVERGE Studio, where the case setup was configured. The simulation itself was run on the main software CONVERGE installed on a multi-core high performance machine. The final goal of this study was to compare the behavior of each turbulence model when studying the performance of annular combustors similar to the most popular turbofan engine’s. The turbulence models chosen were the standard ??-?? and the standard ??-?? and also a set of models were defined to simulate the injection of fuel through a parcel spray and, therefore, better predict the flow inside the combustor. To compare the simulation results, six main parameters were analysed: Turbulent Kinematic Energy (??); Turbulence Dissipation Rate (??); Specific Turbulence Dissipation Rate (??); Turbulent Length Scale (??); Friction Velocity (??*); and the dimensionless wall distance (??+). Both models demonstrated a similar behavior in all the parameters, along the runtime. The results were all within the same order of magnitude, although the absolute values have shown a considerable difference. The simulation outputs were considered acceptable after comparing quantitatively the exhaust parameters, and qualitatively a temperature and TKE contour with two previous works with similar setup conditions. Any turbulence model was judged better than the other, due to the complexity involved in such a study, but only considered different. |
id |
RCAP_0765eb681c288860b8686ece3c8571bd |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/8325 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Combustion analysis on a CFM56-3 engineCfdCfm56-3CombustãoConverge.Jet-AModeloTurbulênciaDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaThe more fuel efficient an engine is, the less fuel is needed to get from point A to point B and the less Greenhouse gases will be produced. In spite of being a major source of carbon dioxide, gas turbine engines lead the aircraft propulsion systems globally and will probably continue for the next decades. Thus, one of the most immediate ways to go green on the skies is by advancing their performance. Nontheless, GTE’s are one of the most complex engineering problems, as they rely on hundreds of parameters that can be tweaked and result in a better configuration. However, we have computers and softwares that allow us to test engine concepts. This study consisted in a numerical analyses of the combustion of Jet-A in the annular combustor of the CFM56-3 engine, through two different turbulence models. The geometry used was ¼ of the engine constructed by Jonas Oliveira by performing a 3D scan on a real size combustor. This geometry was imported and prepared in a CFD software, CONVERGE Studio, where the case setup was configured. The simulation itself was run on the main software CONVERGE installed on a multi-core high performance machine. The final goal of this study was to compare the behavior of each turbulence model when studying the performance of annular combustors similar to the most popular turbofan engine’s. The turbulence models chosen were the standard ??-?? and the standard ??-?? and also a set of models were defined to simulate the injection of fuel through a parcel spray and, therefore, better predict the flow inside the combustor. To compare the simulation results, six main parameters were analysed: Turbulent Kinematic Energy (??); Turbulence Dissipation Rate (??); Specific Turbulence Dissipation Rate (??); Turbulent Length Scale (??); Friction Velocity (??*); and the dimensionless wall distance (??+). Both models demonstrated a similar behavior in all the parameters, along the runtime. The results were all within the same order of magnitude, although the absolute values have shown a considerable difference. The simulation outputs were considered acceptable after comparing quantitatively the exhaust parameters, and qualitatively a temperature and TKE contour with two previous works with similar setup conditions. Any turbulence model was judged better than the other, due to the complexity involved in such a study, but only considered different.Quanto mais eficiente um motor é, menos combustível é necessário para ir de um ponto A para um ponto B e menos gases de efeito estufa são produzidos. Apesar de serem uma fonte de dióxido de carbono significante, os motores de turbina de gás lideram os sistemas de propulsão aeronáutica e provavelmente assim vão continuar nas próximas décadas. Portanto, uma das formas mais rápidas de procurar ser sustentável nos céus é melhorando a sua performance. Todavia, estes motores representam um dos mais complexos problemas de engenharia, uma vez que dependem de centenas de diferentes parâmetros que ao variarem podem levar a que surja uma configuração melhor. No entanto, disponibilizamos de computadores e softwares capazes de testar diferentes conceitos. Este trabalho consistiu em uma análise numérica da combustão de Jet-A no combustor anular do CFM56-3, através de dois modelos de turbulência diferentes. A geometria utilizada foi ¼ do motor construído pelo Jonas Oliveira, ao realizer um scan 3D a um combustor real. Esta geometria foi importada para um software de CFD, CONVERGE Studio, onde todos os parâmetros dos ensaios foram configurados. A simulação em sim foi realizada no software principal CONVERGE, instalado num computador de alto desempenho. O objetivo final deste estudo passou pela comparação do comportamento de cada modelo de turbulência, enquanto estudamos a performance de um dos mais populares motores turbofan. Os modelos de turbulência escolhidos foram o standard ??-?? e o standard ??-??, para além de ter sido selecionado um conjunto de modelos para simular a injeção de combustível através de vaporização, de modo a prever melhor o comportamento do escoamento dentro do combustor. De forma a comparar estes modelos, seis parâmetros principais foram analisados: a enregia cinética turbulenta (??); a taxa de dissipação da energia cinética turbulenta (??); a dissipação da energia cinética turbulenta específica (??); o comprimento característico dos turbilhões (??); a velocidade de fricção (??*); e a distãncia adimensional à parede (??+). Ambos os modelos mostraram um comportamento semelhante ao longo do tempo para todos os parâmetros. Todos os resultados encontram-se na mesma ordem de grandeza, apesar apresentarem uma diferença considerável no seu valor absoluto. Os mesmos foram considerados aceitáveis, após uma comparação quantitativa com parâmetros à saída do combustor e uma comparação qualitativa de um perfil de temperaturas e de um perfil de energia cinética turbulenta com dois estudos de configurações similares. Por fim, nenhum modelo foi classificado melhor que o outro, devido à complexidade envolvida num estudo deste tipo, mas apenas considerados diferentes.Brojo, Francisco Miguel Ribeiro ProençauBibliorumNeves, Kevin Azevedo das2020-01-15T16:48:26Z2018-03-122018-02-122018-03-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/8325TID:202361632enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:48:16Zoai:ubibliorum.ubi.pt:10400.6/8325Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:48:41.038130Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Combustion analysis on a CFM56-3 engine |
title |
Combustion analysis on a CFM56-3 engine |
spellingShingle |
Combustion analysis on a CFM56-3 engine Neves, Kevin Azevedo das Cfd Cfm56-3 Combustão Converge. Jet-A Modelo Turbulência Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
title_short |
Combustion analysis on a CFM56-3 engine |
title_full |
Combustion analysis on a CFM56-3 engine |
title_fullStr |
Combustion analysis on a CFM56-3 engine |
title_full_unstemmed |
Combustion analysis on a CFM56-3 engine |
title_sort |
Combustion analysis on a CFM56-3 engine |
author |
Neves, Kevin Azevedo das |
author_facet |
Neves, Kevin Azevedo das |
author_role |
author |
dc.contributor.none.fl_str_mv |
Brojo, Francisco Miguel Ribeiro Proença uBibliorum |
dc.contributor.author.fl_str_mv |
Neves, Kevin Azevedo das |
dc.subject.por.fl_str_mv |
Cfd Cfm56-3 Combustão Converge. Jet-A Modelo Turbulência Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
topic |
Cfd Cfm56-3 Combustão Converge. Jet-A Modelo Turbulência Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
description |
The more fuel efficient an engine is, the less fuel is needed to get from point A to point B and the less Greenhouse gases will be produced. In spite of being a major source of carbon dioxide, gas turbine engines lead the aircraft propulsion systems globally and will probably continue for the next decades. Thus, one of the most immediate ways to go green on the skies is by advancing their performance. Nontheless, GTE’s are one of the most complex engineering problems, as they rely on hundreds of parameters that can be tweaked and result in a better configuration. However, we have computers and softwares that allow us to test engine concepts. This study consisted in a numerical analyses of the combustion of Jet-A in the annular combustor of the CFM56-3 engine, through two different turbulence models. The geometry used was ¼ of the engine constructed by Jonas Oliveira by performing a 3D scan on a real size combustor. This geometry was imported and prepared in a CFD software, CONVERGE Studio, where the case setup was configured. The simulation itself was run on the main software CONVERGE installed on a multi-core high performance machine. The final goal of this study was to compare the behavior of each turbulence model when studying the performance of annular combustors similar to the most popular turbofan engine’s. The turbulence models chosen were the standard ??-?? and the standard ??-?? and also a set of models were defined to simulate the injection of fuel through a parcel spray and, therefore, better predict the flow inside the combustor. To compare the simulation results, six main parameters were analysed: Turbulent Kinematic Energy (??); Turbulence Dissipation Rate (??); Specific Turbulence Dissipation Rate (??); Turbulent Length Scale (??); Friction Velocity (??*); and the dimensionless wall distance (??+). Both models demonstrated a similar behavior in all the parameters, along the runtime. The results were all within the same order of magnitude, although the absolute values have shown a considerable difference. The simulation outputs were considered acceptable after comparing quantitatively the exhaust parameters, and qualitatively a temperature and TKE contour with two previous works with similar setup conditions. Any turbulence model was judged better than the other, due to the complexity involved in such a study, but only considered different. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-12 2018-02-12 2018-03-12T00:00:00Z 2020-01-15T16:48:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/8325 TID:202361632 |
url |
http://hdl.handle.net/10400.6/8325 |
identifier_str_mv |
TID:202361632 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136380399386624 |