CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor

Detalhes bibliográficos
Autor(a) principal: Oliveira, Jonas Miguel Pires
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/6527
Resumo: A CFD simulation of a CFM56-3 combustor burning Jet-A and a 100% blend of biofuels, is performed. It is intended to evaluate the viability of these biofuels in a combustion point of view, by analysing the emissions and the energy extracted when burning these through ICAO's LTO cycle, so that these biofuels can be considered as a future civil aviation fuel. The three biofuels considered for this study were extracted from jatropha seeds, algae and sunflower. Due to the confidentiality that exits among GTE manufacturers, it is very difficult to obtain the blueprint of any given part of a GTE, and the combustor in study was no exception. Fortunately TAP kindly provided an operational CFM56-3 combustor, and with the aid of a 3D scanner, named Spider from Artec group, which belongs to UBI, it was possible to create a 3D model of the combustor. From this 3D model, an STL file can be exported, and then imported into CATIA V5, which is the software chosen to perform the CAD. All of the relevant parts of the combustor is represented, which include the primary and secondary swirlers, fuel injectors, cooling holes, walls and the dome; only one quarter of the combustor was used for the numerical study due to the existing symmetry, and due to the fact that within the existing 20 fuel injectors, there are four of them that inject the fuel with a richer mixture. The numerical mesh is created using HELYX-OS and the commercial software ANSYS Fluent 15.0 is used to perform the numerical study. Due to the complexity of this study, the atomization of the fuel was not considered. The viscous model used is the RSM; all of the air-inlets as well as the fuel injectors are defined as mass-flow inlets, and the exit of the combustor is defined as a pressure-outlet. The final results show reasonable agreement with the reference values presented by ICAO, when Jet-A is combusted, representing an error in general very low. Among all of the fuels simulated, it was proved that increasing the power produced higher NOx and lower UHC; however an unexpected behaviour of CO emission decrease with a power increase, was predicted. The biofuel that presented the best performance in ICAO's LTO cycle regarding NOx, CO and UHC emissions was sunflower biofuel, as these emissions were lower when compared to all of the fuels. Jatropha biofuel presented the highest CO2 reduction, representing a 20% decrease from Jet-A, and the energy extracted represented a minimal decrease of 6% when compared to the same fuel. Overall, it can be concluded that the biofuels studied have the potential to replace kerosene, and despite more biofuel has to be burned to produce the same amount of energy as Jet-A, a significant reduction in emissions is predicted.
id RCAP_dbd516da84f5ee7de9a025df1c34ce72
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/6527
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 CombustorAnsys FluentBiocombustíveisCâmara de CombustãoCatia V5CfdCfm56-3EmissõesHelyx-OsTapDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasA CFD simulation of a CFM56-3 combustor burning Jet-A and a 100% blend of biofuels, is performed. It is intended to evaluate the viability of these biofuels in a combustion point of view, by analysing the emissions and the energy extracted when burning these through ICAO's LTO cycle, so that these biofuels can be considered as a future civil aviation fuel. The three biofuels considered for this study were extracted from jatropha seeds, algae and sunflower. Due to the confidentiality that exits among GTE manufacturers, it is very difficult to obtain the blueprint of any given part of a GTE, and the combustor in study was no exception. Fortunately TAP kindly provided an operational CFM56-3 combustor, and with the aid of a 3D scanner, named Spider from Artec group, which belongs to UBI, it was possible to create a 3D model of the combustor. From this 3D model, an STL file can be exported, and then imported into CATIA V5, which is the software chosen to perform the CAD. All of the relevant parts of the combustor is represented, which include the primary and secondary swirlers, fuel injectors, cooling holes, walls and the dome; only one quarter of the combustor was used for the numerical study due to the existing symmetry, and due to the fact that within the existing 20 fuel injectors, there are four of them that inject the fuel with a richer mixture. The numerical mesh is created using HELYX-OS and the commercial software ANSYS Fluent 15.0 is used to perform the numerical study. Due to the complexity of this study, the atomization of the fuel was not considered. The viscous model used is the RSM; all of the air-inlets as well as the fuel injectors are defined as mass-flow inlets, and the exit of the combustor is defined as a pressure-outlet. The final results show reasonable agreement with the reference values presented by ICAO, when Jet-A is combusted, representing an error in general very low. Among all of the fuels simulated, it was proved that increasing the power produced higher NOx and lower UHC; however an unexpected behaviour of CO emission decrease with a power increase, was predicted. The biofuel that presented the best performance in ICAO's LTO cycle regarding NOx, CO and UHC emissions was sunflower biofuel, as these emissions were lower when compared to all of the fuels. Jatropha biofuel presented the highest CO2 reduction, representing a 20% decrease from Jet-A, and the energy extracted represented a minimal decrease of 6% when compared to the same fuel. Overall, it can be concluded that the biofuels studied have the potential to replace kerosene, and despite more biofuel has to be burned to produce the same amount of energy as Jet-A, a significant reduction in emissions is predicted.Uma simulação CFD é realizada numa câmara de combustão do motor CFM56-3, usando como combustíveis Jet-A e uma mistura de biocombustíveis a 100%. É pretendido avaliar a viabilidade destes biocombustíveis num ponto de vista da combustão, ao analisar as emissões e a energia extraída quando estes combustíveis são injetados, a fim de que estes biocombustíveis possam ser considerados como uma possibilidade de futuros combustíveis para a aviação comercial. Os três biocombustíveis que foram considerados para este estudo, são extraídos de sementes da planta jatropha, de algas e de girassol. Devido à confidencialidade que reina entre as empresas de manufatura de turbinas a gás, é muito difícil obter o blueprint de qualquer parte de uma turbina a gás, e a câmara de combustão em estudo não foi exceção. Felizmente a TAP gentilmente cedeu uma câmara de combustão ainda em serviço, na qual foi possível realizar um scan 3D, com recurso ao scanner pertencente à UBI, denominado de Spider da Artec Group. A partir deste modelo 3D, um ficheiro STL pôde ser exportado, e depois importado para o CATIA V5, que por sua vez foi o software escolhido para efetuar o CAD. Todas as partes da câmara de combustão relevantes para o estudo são representadas, onde estão incluídos os swirlers primário e secundário, os injetores de combustível, os orificios para arrefecimento, as paredes e o dome; apenas um quarto da câmara de combustão é usado para o estudo numérico devido à simetria existente, e devido ao facto que dos 20 injectores de combustível presentes, existem 4 em que é injetado uma mistura mais rica. A malha numérica é criada com recurso ao HELYX-OS, e o software comercial ANSYS Fluent 15.0 é usado para efetuar o estudo numérico. Devido à complexidade deste estudo, a atomização do combustível não é considerada. O modelo viscoso usado é o RSM; todas as entradas de ar, bem como os injetores de combustível são definidos como mass-flow inlets, e a saída da câmara de combustão é definida como um pressure-outlet. Os resultados finais estão razoalmente de acordo com os dados de referência apresentados pela ICAO, quando Jet-A é queimado, apresentando um erro no geral muito reduzido. Entre todos os combustíveis simulados, foi provado que aumentando a potência resultava num aumento de emissões NOx e num decréscimo de UHC's; contudo um comportamento inesperado de uma redução de emissões CO com o aumento da potência, foi verificado. O biocombustível que apresentou os melhores resultados ao longo de todo o ciclo de potência da ICAO, com respeito às emissões NOx, CO e UHC, foi o proveniente de girassol, uma vez que foi previsto valores de emissões inferiores, quando comparados com os restantes combustíveis. O biocombustível proveniente de jatropha foi o que apresentou uma maior redução de emissões CO2, representando um decréscimo de 20% comparando com o de Jet-A, e a energia extraída representou um menor decréscimo de 6% quando comparado com o mesmo combustível. No geral pode ser concluído que os biocombustíveis estudados têm o potencial de substituir a querosene, e apesar de que um maior consumo é exigido aos biocombustíveis, de forma a produzir a mesma energia que Jet-A, uma redução significativa de emissões é prevista.Brojo, Francisco Miguel Ribeiro ProençauBibliorumOliveira, Jonas Miguel Pires2018-11-28T16:13:08Z2016-2-12016-03-042016-03-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.6/6527TID:201772434enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:45:06Zoai:ubibliorum.ubi.pt:10400.6/6527Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:13.981667Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor
title CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor
spellingShingle CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor
Oliveira, Jonas Miguel Pires
Ansys Fluent
Biocombustíveis
Câmara de Combustão
Catia V5
Cfd
Cfm56-3
Emissões
Helyx-Os
Tap
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor
title_full CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor
title_fullStr CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor
title_full_unstemmed CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor
title_sort CFD Analysis of the Combustion of Bio-Derived Fuels in the CFM56-3 Combustor
author Oliveira, Jonas Miguel Pires
author_facet Oliveira, Jonas Miguel Pires
author_role author
dc.contributor.none.fl_str_mv Brojo, Francisco Miguel Ribeiro Proença
uBibliorum
dc.contributor.author.fl_str_mv Oliveira, Jonas Miguel Pires
dc.subject.por.fl_str_mv Ansys Fluent
Biocombustíveis
Câmara de Combustão
Catia V5
Cfd
Cfm56-3
Emissões
Helyx-Os
Tap
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Ansys Fluent
Biocombustíveis
Câmara de Combustão
Catia V5
Cfd
Cfm56-3
Emissões
Helyx-Os
Tap
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description A CFD simulation of a CFM56-3 combustor burning Jet-A and a 100% blend of biofuels, is performed. It is intended to evaluate the viability of these biofuels in a combustion point of view, by analysing the emissions and the energy extracted when burning these through ICAO's LTO cycle, so that these biofuels can be considered as a future civil aviation fuel. The three biofuels considered for this study were extracted from jatropha seeds, algae and sunflower. Due to the confidentiality that exits among GTE manufacturers, it is very difficult to obtain the blueprint of any given part of a GTE, and the combustor in study was no exception. Fortunately TAP kindly provided an operational CFM56-3 combustor, and with the aid of a 3D scanner, named Spider from Artec group, which belongs to UBI, it was possible to create a 3D model of the combustor. From this 3D model, an STL file can be exported, and then imported into CATIA V5, which is the software chosen to perform the CAD. All of the relevant parts of the combustor is represented, which include the primary and secondary swirlers, fuel injectors, cooling holes, walls and the dome; only one quarter of the combustor was used for the numerical study due to the existing symmetry, and due to the fact that within the existing 20 fuel injectors, there are four of them that inject the fuel with a richer mixture. The numerical mesh is created using HELYX-OS and the commercial software ANSYS Fluent 15.0 is used to perform the numerical study. Due to the complexity of this study, the atomization of the fuel was not considered. The viscous model used is the RSM; all of the air-inlets as well as the fuel injectors are defined as mass-flow inlets, and the exit of the combustor is defined as a pressure-outlet. The final results show reasonable agreement with the reference values presented by ICAO, when Jet-A is combusted, representing an error in general very low. Among all of the fuels simulated, it was proved that increasing the power produced higher NOx and lower UHC; however an unexpected behaviour of CO emission decrease with a power increase, was predicted. The biofuel that presented the best performance in ICAO's LTO cycle regarding NOx, CO and UHC emissions was sunflower biofuel, as these emissions were lower when compared to all of the fuels. Jatropha biofuel presented the highest CO2 reduction, representing a 20% decrease from Jet-A, and the energy extracted represented a minimal decrease of 6% when compared to the same fuel. Overall, it can be concluded that the biofuels studied have the potential to replace kerosene, and despite more biofuel has to be burned to produce the same amount of energy as Jet-A, a significant reduction in emissions is predicted.
publishDate 2016
dc.date.none.fl_str_mv 2016-2-1
2016-03-04
2016-03-04T00:00:00Z
2018-11-28T16:13:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/6527
TID:201772434
url http://hdl.handle.net/10400.6/6527
identifier_str_mv TID:201772434
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136367637168128