3D Sensing Character Simulation using Game Engine Physics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/151145 |
Resumo: | Creating visual 3D sensing characters that interact with AI peers and the virtual envi- ronment can be a difficult task for those with less experience in using learning algorithms or creating visual environments to execute an agent-based simulation. In this thesis, the use of game engines was studied as a tool to create and execute vi- sual simulations with 3D sensing characters, and train game ready bots. The idea was to make use of the game engine’s available tools to create highly visual simulations without requiring much knowledge in modeling or animation, as well as integrating exterior agent simulation libraries to create sensing characters without needing expertise in learning algorithms. These sensing characters, were be 3D humanoid characters that can perform the basic functions of a game character such as moving, jumping, and interacting, but also have simulated different senses in them. The senses that these characters can have include: touch using collision detection, vision using ray casts, directional sound, smell, and other imaginable senses. These senses are obtained using different game develop- ment techniques available in the game engine and can be used as input for the learning algorithm to help the character learn. This allows the simulation of agents using off-the- shelf algorithms and using the game engine’s motor for the visualizations of these agents. We explored the use of these tools to create visual bots for games, and teach them how to play the game until they reach a level where they can serve as adversaries for real-life players in interactive games. This solution was tested using both reinforcement learning and imitation learning algorithms in an attempt to compare how efficient both learning methods can be when used to teach sensing game bots in different game scenarios. These scenarios varied in both objective and environment complexity as well as the number of bots to access how each solution behaves in different scenarios. In this document is presented a related work on the agent simulation and game engine areas, followed by a more detailed solution and its implementation ending with practical tests and its results. |
id |
RCAP_26b2fe04538269d023a06724cb884c03 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/151145 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
3D Sensing Character Simulation using Game Engine Physics3D Sensing CharactersGame BotGame Engin3D AnimationSimulation VisualizationAgent SimulationDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaCreating visual 3D sensing characters that interact with AI peers and the virtual envi- ronment can be a difficult task for those with less experience in using learning algorithms or creating visual environments to execute an agent-based simulation. In this thesis, the use of game engines was studied as a tool to create and execute vi- sual simulations with 3D sensing characters, and train game ready bots. The idea was to make use of the game engine’s available tools to create highly visual simulations without requiring much knowledge in modeling or animation, as well as integrating exterior agent simulation libraries to create sensing characters without needing expertise in learning algorithms. These sensing characters, were be 3D humanoid characters that can perform the basic functions of a game character such as moving, jumping, and interacting, but also have simulated different senses in them. The senses that these characters can have include: touch using collision detection, vision using ray casts, directional sound, smell, and other imaginable senses. These senses are obtained using different game develop- ment techniques available in the game engine and can be used as input for the learning algorithm to help the character learn. This allows the simulation of agents using off-the- shelf algorithms and using the game engine’s motor for the visualizations of these agents. We explored the use of these tools to create visual bots for games, and teach them how to play the game until they reach a level where they can serve as adversaries for real-life players in interactive games. This solution was tested using both reinforcement learning and imitation learning algorithms in an attempt to compare how efficient both learning methods can be when used to teach sensing game bots in different game scenarios. These scenarios varied in both objective and environment complexity as well as the number of bots to access how each solution behaves in different scenarios. In this document is presented a related work on the agent simulation and game engine areas, followed by a more detailed solution and its implementation ending with practical tests and its results.Criar visualizações de personagens 3D com sentidos que interagem com colegas de IA e com o ambiente virtual pode ser uma tarefa difícil para programadores com menos experiência no uso de algoritmos de aprendizagem automática ou na criação de ambientes visuais para executar simulações baseadas em agentes. Nesta tese foi estudado o uso de motores de jogos como ferramenta para criar e execu- tar simulações visuais com personagens 3D, e treinar bots para jogos. A ideia foi usar as ferramentas disponíveis do motor de jogos para criar simulações visuais sem exigir muito conhecimento em modelação ou animação, para além de integrar bibliotecas de simulação de agentes externas para criar personagens com sentidos sem precisar de conhecimentos em algoritmos de aprendizagem automática. Estas personagens 3D são humanoides que podem desempenhar as funções básicas de uma personagem de um jogo como mover, saltar e interagir, mas também terão simulados neles diferentes sentidos. Os sentidos que estas personagens podem ter inclui: o tato, colisões, visão, som direcional, olfato e outros sentidos imagináveis. Estes sentidos são obtidos usando diferentes técnicas de desenvol- vimento de jogos disponíveis no motor de jogos, e podem ser usados como inputs para os algoritmos de aprendizagem automática para ajudar as personagens a aprender. Esta solução foi testada usando algoritmos de Reinforcement Learning e Imitation Le- arning, com o intuito de comparar a eficiência de ambos os métodos de aprendizagem quando usados para ensinar bots de jogos em diferentes cenários. Estes cenários variaram em complexidade de objetivo e ambiente, e também no número de bots para que se possa visualizar como cada algoritmo se comporta em diferentes cenários. Neste documento será apresentado um estado da arte nas áreas de simulação de agentes e motores de jogos, seguido de uma proposta de solução mais detalhada para este problema.Nóbrega, RuiRUNRodrigues, João Filipe Pereira2023-03-24T10:35:10Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/151145enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:36Zoai:run.unl.pt:10362/151145Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:29.023906Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
3D Sensing Character Simulation using Game Engine Physics |
title |
3D Sensing Character Simulation using Game Engine Physics |
spellingShingle |
3D Sensing Character Simulation using Game Engine Physics Rodrigues, João Filipe Pereira 3D Sensing Characters Game Bot Game Engin 3D Animation Simulation Visualization Agent Simulation Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
3D Sensing Character Simulation using Game Engine Physics |
title_full |
3D Sensing Character Simulation using Game Engine Physics |
title_fullStr |
3D Sensing Character Simulation using Game Engine Physics |
title_full_unstemmed |
3D Sensing Character Simulation using Game Engine Physics |
title_sort |
3D Sensing Character Simulation using Game Engine Physics |
author |
Rodrigues, João Filipe Pereira |
author_facet |
Rodrigues, João Filipe Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Nóbrega, Rui RUN |
dc.contributor.author.fl_str_mv |
Rodrigues, João Filipe Pereira |
dc.subject.por.fl_str_mv |
3D Sensing Characters Game Bot Game Engin 3D Animation Simulation Visualization Agent Simulation Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
3D Sensing Characters Game Bot Game Engin 3D Animation Simulation Visualization Agent Simulation Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Creating visual 3D sensing characters that interact with AI peers and the virtual envi- ronment can be a difficult task for those with less experience in using learning algorithms or creating visual environments to execute an agent-based simulation. In this thesis, the use of game engines was studied as a tool to create and execute vi- sual simulations with 3D sensing characters, and train game ready bots. The idea was to make use of the game engine’s available tools to create highly visual simulations without requiring much knowledge in modeling or animation, as well as integrating exterior agent simulation libraries to create sensing characters without needing expertise in learning algorithms. These sensing characters, were be 3D humanoid characters that can perform the basic functions of a game character such as moving, jumping, and interacting, but also have simulated different senses in them. The senses that these characters can have include: touch using collision detection, vision using ray casts, directional sound, smell, and other imaginable senses. These senses are obtained using different game develop- ment techniques available in the game engine and can be used as input for the learning algorithm to help the character learn. This allows the simulation of agents using off-the- shelf algorithms and using the game engine’s motor for the visualizations of these agents. We explored the use of these tools to create visual bots for games, and teach them how to play the game until they reach a level where they can serve as adversaries for real-life players in interactive games. This solution was tested using both reinforcement learning and imitation learning algorithms in an attempt to compare how efficient both learning methods can be when used to teach sensing game bots in different game scenarios. These scenarios varied in both objective and environment complexity as well as the number of bots to access how each solution behaves in different scenarios. In this document is presented a related work on the agent simulation and game engine areas, followed by a more detailed solution and its implementation ending with practical tests and its results. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 2022-12-01T00:00:00Z 2023-03-24T10:35:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/151145 |
url |
http://hdl.handle.net/10362/151145 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138133709684736 |