Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations

Detalhes bibliográficos
Autor(a) principal: Amado, Cristina
Data de Publicação: 2011
Outros Autores: Teräsvirta, Timo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/12389
Resumo: In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long-run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange. The results suggest that accounting for deterministic changes in the unconditional variances considerably improves the fit of the multivariate Conditional Correlation GARCH models to the data. The effect of careful specification of the variance equations on the estimated correlations is variable: in some cases rather small, in others more discernible. As a by-product, we generalize news impact surfaces to the situation in which both the GARCH equations and the conditional correlations contain a deterministic component that is a function of time.
id RCAP_32d400fd5788b16dea438da8331409b9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/12389
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equationsMultivariate GARCH modelLagrange multiplier testModelling cycleNonlinear time seriesIn this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long-run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange. The results suggest that accounting for deterministic changes in the unconditional variances considerably improves the fit of the multivariate Conditional Correlation GARCH models to the data. The effect of careful specification of the variance equations on the estimated correlations is variable: in some cases rather small, in others more discernible. As a by-product, we generalize news impact surfaces to the situation in which both the GARCH equations and the conditional correlations contain a deterministic component that is a function of time.Fundação para a Ciência e a Tecnologia (FCT)Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)Universidade do MinhoAmado, CristinaTeräsvirta, Timo2011-052011-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/12389engAMADO, Cristina ; TERÄVIRTA, Timo - "Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations." [Em linha]. Braga : Núcleo de Investigação em Microeconomia Aplicada, 2011. [Consult. 11 Maio 2011]. Disponível em WWW:<URL: http://www3.eeg.uminho.pt/economia/nipe/docs/2011/NIPE_WP_15_2011.pdf>.http://www3.eeg.uminho.pt/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:13:54Zoai:repositorium.sdum.uminho.pt:1822/12389Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:06:06.464413Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
title Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
spellingShingle Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
Amado, Cristina
Multivariate GARCH model
Lagrange multiplier test
Modelling cycle
Nonlinear time series
title_short Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
title_full Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
title_fullStr Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
title_full_unstemmed Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
title_sort Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
author Amado, Cristina
author_facet Amado, Cristina
Teräsvirta, Timo
author_role author
author2 Teräsvirta, Timo
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Amado, Cristina
Teräsvirta, Timo
dc.subject.por.fl_str_mv Multivariate GARCH model
Lagrange multiplier test
Modelling cycle
Nonlinear time series
topic Multivariate GARCH model
Lagrange multiplier test
Modelling cycle
Nonlinear time series
description In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long-run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange. The results suggest that accounting for deterministic changes in the unconditional variances considerably improves the fit of the multivariate Conditional Correlation GARCH models to the data. The effect of careful specification of the variance equations on the estimated correlations is variable: in some cases rather small, in others more discernible. As a by-product, we generalize news impact surfaces to the situation in which both the GARCH equations and the conditional correlations contain a deterministic component that is a function of time.
publishDate 2011
dc.date.none.fl_str_mv 2011-05
2011-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/12389
url http://hdl.handle.net/1822/12389
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv AMADO, Cristina ; TERÄVIRTA, Timo - "Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations." [Em linha]. Braga : Núcleo de Investigação em Microeconomia Aplicada, 2011. [Consult. 11 Maio 2011]. Disponível em WWW:<URL: http://www3.eeg.uminho.pt/economia/nipe/docs/2011/NIPE_WP_15_2011.pdf>.
http://www3.eeg.uminho.pt/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)
publisher.none.fl_str_mv Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132475239170048