Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/12389 |
Resumo: | In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long-run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange. The results suggest that accounting for deterministic changes in the unconditional variances considerably improves the fit of the multivariate Conditional Correlation GARCH models to the data. The effect of careful specification of the variance equations on the estimated correlations is variable: in some cases rather small, in others more discernible. As a by-product, we generalize news impact surfaces to the situation in which both the GARCH equations and the conditional correlations contain a deterministic component that is a function of time. |
id |
RCAP_32d400fd5788b16dea438da8331409b9 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/12389 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equationsMultivariate GARCH modelLagrange multiplier testModelling cycleNonlinear time seriesIn this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long-run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange. The results suggest that accounting for deterministic changes in the unconditional variances considerably improves the fit of the multivariate Conditional Correlation GARCH models to the data. The effect of careful specification of the variance equations on the estimated correlations is variable: in some cases rather small, in others more discernible. As a by-product, we generalize news impact surfaces to the situation in which both the GARCH equations and the conditional correlations contain a deterministic component that is a function of time.Fundação para a Ciência e a Tecnologia (FCT)Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)Universidade do MinhoAmado, CristinaTeräsvirta, Timo2011-052011-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/12389engAMADO, Cristina ; TERÄVIRTA, Timo - "Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations." [Em linha]. Braga : Núcleo de Investigação em Microeconomia Aplicada, 2011. [Consult. 11 Maio 2011]. Disponível em WWW:<URL: http://www3.eeg.uminho.pt/economia/nipe/docs/2011/NIPE_WP_15_2011.pdf>.http://www3.eeg.uminho.pt/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:13:54Zoai:repositorium.sdum.uminho.pt:1822/12389Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:06:06.464413Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations |
title |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations |
spellingShingle |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations Amado, Cristina Multivariate GARCH model Lagrange multiplier test Modelling cycle Nonlinear time series |
title_short |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations |
title_full |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations |
title_fullStr |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations |
title_full_unstemmed |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations |
title_sort |
Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations |
author |
Amado, Cristina |
author_facet |
Amado, Cristina Teräsvirta, Timo |
author_role |
author |
author2 |
Teräsvirta, Timo |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Amado, Cristina Teräsvirta, Timo |
dc.subject.por.fl_str_mv |
Multivariate GARCH model Lagrange multiplier test Modelling cycle Nonlinear time series |
topic |
Multivariate GARCH model Lagrange multiplier test Modelling cycle Nonlinear time series |
description |
In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long-run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange. The results suggest that accounting for deterministic changes in the unconditional variances considerably improves the fit of the multivariate Conditional Correlation GARCH models to the data. The effect of careful specification of the variance equations on the estimated correlations is variable: in some cases rather small, in others more discernible. As a by-product, we generalize news impact surfaces to the situation in which both the GARCH equations and the conditional correlations contain a deterministic component that is a function of time. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05 2011-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/12389 |
url |
http://hdl.handle.net/1822/12389 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
AMADO, Cristina ; TERÄVIRTA, Timo - "Conditional correlation models of autoregressive conditional heteroskedasticity with nonstationary GARCH equations." [Em linha]. Braga : Núcleo de Investigação em Microeconomia Aplicada, 2011. [Consult. 11 Maio 2011]. Disponível em WWW:<URL: http://www3.eeg.uminho.pt/economia/nipe/docs/2011/NIPE_WP_15_2011.pdf>. http://www3.eeg.uminho.pt/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE) |
publisher.none.fl_str_mv |
Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132475239170048 |