Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis

Detalhes bibliográficos
Autor(a) principal: Pires, Ana O.
Data de Publicação: 2016
Outros Autores: Pinheiro, Bárbara Filipa Mendes, Teixeira, Fábio Gabriel Rodrigues, Anjo, Sandra, Ribeiro-Samy, Silvina, Gomes, Eduardo Domingos Correia, Serra, Sofia Cravino, Silva, Nuno André Martins, Manadas, Bruno, Sousa, Nuno, Salgado, A. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/50310
Resumo: The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials.
id RCAP_36a6f144bbb63c59ce9ed9c598dbf96e
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/50310
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic AnalysisCiências Médicas::Medicina BásicaScience & TechnologyThe use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials.Foundation Calouste de Gulbenkian for the funds attributed to A.J.S.; Portuguese Foundation for Science and Technology (FCT) PhD fel- lowships attributed to A.O.P. (SFRH/BD/33900/2009) and S.I.A. (SFRH/BD/81495/2011) and Ciência 2007, IF Development Grant attributed to A.J.S., and projects PTDC/ NEU-NMC/0205/2012, UID/NEU/04539/2013; cofinanced by COMPETE Programa Operacional Factores de Compe- titividade; and by The National Mass Spectrometry Network (RNEM) (REDE/1506/REM/2005); Prémios Santa Casa Neurociências—Prize Melo e Castro for Spinal Cord Injury Research; cofunded by Programa Operacional Regional do Norte (ON.2–O Novo Norte),ao abrigo do Quadro de Referência Estratégico Nacional (QREN), and através do Fundo Europeu de Desenvolvimento Regional (FEDER). The authors also would like to thank Professor J.E.D. (University of Toronto, Canada) and Professor J.M.G. (Tulane University) for kindly providing HUCPVCs and ASCs, respectivelyinfo:eu-repo/semantics/publishedVersionMary Ann Liebert Inc.Universidade do MinhoPires, Ana O.Pinheiro, Bárbara Filipa MendesTeixeira, Fábio Gabriel RodriguesAnjo, SandraRibeiro-Samy, SilvinaGomes, Eduardo Domingos CorreiaSerra, Sofia CravinoSilva, Nuno André MartinsManadas, BrunoSousa, NunoSalgado, A. J.2016-05-152016-05-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/50310engPires, A. O., Mendes-Pinheiro, B., Teixeira, F. G., Anjo, S. I., Ribeiro-Samy, S., Gomes, E. D., ... & Salgado, A. J. (2016). Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem cells and development, 25(14), 1073-10831547-32871557-853410.1089/scd.2016.004827226274http://online.liebertpub.com/doi/abs/10.1089/scd.2016.0048info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:51:16Zoai:repositorium.sdum.uminho.pt:1822/50310Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:50:07.448486Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis
title Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis
spellingShingle Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis
Pires, Ana O.
Ciências Médicas::Medicina Básica
Science & Technology
title_short Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis
title_full Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis
title_fullStr Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis
title_full_unstemmed Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis
title_sort Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis
author Pires, Ana O.
author_facet Pires, Ana O.
Pinheiro, Bárbara Filipa Mendes
Teixeira, Fábio Gabriel Rodrigues
Anjo, Sandra
Ribeiro-Samy, Silvina
Gomes, Eduardo Domingos Correia
Serra, Sofia Cravino
Silva, Nuno André Martins
Manadas, Bruno
Sousa, Nuno
Salgado, A. J.
author_role author
author2 Pinheiro, Bárbara Filipa Mendes
Teixeira, Fábio Gabriel Rodrigues
Anjo, Sandra
Ribeiro-Samy, Silvina
Gomes, Eduardo Domingos Correia
Serra, Sofia Cravino
Silva, Nuno André Martins
Manadas, Bruno
Sousa, Nuno
Salgado, A. J.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Pires, Ana O.
Pinheiro, Bárbara Filipa Mendes
Teixeira, Fábio Gabriel Rodrigues
Anjo, Sandra
Ribeiro-Samy, Silvina
Gomes, Eduardo Domingos Correia
Serra, Sofia Cravino
Silva, Nuno André Martins
Manadas, Bruno
Sousa, Nuno
Salgado, A. J.
dc.subject.por.fl_str_mv Ciências Médicas::Medicina Básica
Science & Technology
topic Ciências Médicas::Medicina Básica
Science & Technology
description The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials.
publishDate 2016
dc.date.none.fl_str_mv 2016-05-15
2016-05-15T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/50310
url http://hdl.handle.net/1822/50310
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pires, A. O., Mendes-Pinheiro, B., Teixeira, F. G., Anjo, S. I., Ribeiro-Samy, S., Gomes, E. D., ... & Salgado, A. J. (2016). Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem cells and development, 25(14), 1073-1083
1547-3287
1557-8534
10.1089/scd.2016.0048
27226274
http://online.liebertpub.com/doi/abs/10.1089/scd.2016.0048
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Mary Ann Liebert Inc.
publisher.none.fl_str_mv Mary Ann Liebert Inc.
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133085225189376