Using syntactic and semantic features for classifying modal values in the Portuguese language

Detalhes bibliográficos
Autor(a) principal: Sequeira, João
Data de Publicação: 2016
Outros Autores: Gonçalves, Teresa, Quaresma, Paulo, Mendes, Amália, Hendrickx, Iris
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/30783
Resumo: This paper presents a study made in a eld poorly explored in the Portuguese language { modality and its automatic tagging. Our main goal was to nd a set of attributes for the creation of automatic taggers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored eld, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntactic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three di erent sets of attributes { from trigger itself and the trigger's path (from the parse tree) and context { the system creates a tagger for each verb achieving (in almost every verb) an improvement in F1 when compared to the traditional bow approach.
id RCAP_400ff245e37c5380ccb5a713a9e1a9b2
oai_identifier_str oai:repositorio.ul.pt:10451/30783
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Using syntactic and semantic features for classifying modal values in the Portuguese languageThis paper presents a study made in a eld poorly explored in the Portuguese language { modality and its automatic tagging. Our main goal was to nd a set of attributes for the creation of automatic taggers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored eld, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntactic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three di erent sets of attributes { from trigger itself and the trigger's path (from the parse tree) and context { the system creates a tagger for each verb achieving (in almost every verb) an improvement in F1 when compared to the traditional bow approach.SpringerRepositório da Universidade de LisboaSequeira, JoãoGonçalves, TeresaQuaresma, PauloMendes, AmáliaHendrickx, Iris2018-01-22T09:57:14Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/30783engSequeira, João, Teresa Gonçalves, Paulo Quaresma, Amália Mendes & Iris Hendrickx (2016) Using syntactic and semantic features for classifying modal values in the Portuguese language. In: Proceedings of CICLing-16, 17th international Conference on Intelligent Text Processing and Computational Linguistics, Lecture Notes in Computer Science. Springer.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:23:36Zoai:repositorio.ul.pt:10451/30783Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:46:19.269243Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Using syntactic and semantic features for classifying modal values in the Portuguese language
title Using syntactic and semantic features for classifying modal values in the Portuguese language
spellingShingle Using syntactic and semantic features for classifying modal values in the Portuguese language
Sequeira, João
title_short Using syntactic and semantic features for classifying modal values in the Portuguese language
title_full Using syntactic and semantic features for classifying modal values in the Portuguese language
title_fullStr Using syntactic and semantic features for classifying modal values in the Portuguese language
title_full_unstemmed Using syntactic and semantic features for classifying modal values in the Portuguese language
title_sort Using syntactic and semantic features for classifying modal values in the Portuguese language
author Sequeira, João
author_facet Sequeira, João
Gonçalves, Teresa
Quaresma, Paulo
Mendes, Amália
Hendrickx, Iris
author_role author
author2 Gonçalves, Teresa
Quaresma, Paulo
Mendes, Amália
Hendrickx, Iris
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Sequeira, João
Gonçalves, Teresa
Quaresma, Paulo
Mendes, Amália
Hendrickx, Iris
description This paper presents a study made in a eld poorly explored in the Portuguese language { modality and its automatic tagging. Our main goal was to nd a set of attributes for the creation of automatic taggers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored eld, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntactic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three di erent sets of attributes { from trigger itself and the trigger's path (from the parse tree) and context { the system creates a tagger for each verb achieving (in almost every verb) an improvement in F1 when compared to the traditional bow approach.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2018-01-22T09:57:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/30783
url http://hdl.handle.net/10451/30783
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sequeira, João, Teresa Gonçalves, Paulo Quaresma, Amália Mendes & Iris Hendrickx (2016) Using syntactic and semantic features for classifying modal values in the Portuguese language. In: Proceedings of CICLing-16, 17th international Conference on Intelligent Text Processing and Computational Linguistics, Lecture Notes in Computer Science. Springer.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134387588038656