Using syntactic and semantic features for classifying modal values in the Portuguese language
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/30783 |
Resumo: | This paper presents a study made in a eld poorly explored in the Portuguese language { modality and its automatic tagging. Our main goal was to nd a set of attributes for the creation of automatic taggers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored eld, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntactic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three di erent sets of attributes { from trigger itself and the trigger's path (from the parse tree) and context { the system creates a tagger for each verb achieving (in almost every verb) an improvement in F1 when compared to the traditional bow approach. |
id |
RCAP_400ff245e37c5380ccb5a713a9e1a9b2 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/30783 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using syntactic and semantic features for classifying modal values in the Portuguese languageThis paper presents a study made in a eld poorly explored in the Portuguese language { modality and its automatic tagging. Our main goal was to nd a set of attributes for the creation of automatic taggers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored eld, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntactic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three di erent sets of attributes { from trigger itself and the trigger's path (from the parse tree) and context { the system creates a tagger for each verb achieving (in almost every verb) an improvement in F1 when compared to the traditional bow approach.SpringerRepositório da Universidade de LisboaSequeira, JoãoGonçalves, TeresaQuaresma, PauloMendes, AmáliaHendrickx, Iris2018-01-22T09:57:14Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/30783engSequeira, João, Teresa Gonçalves, Paulo Quaresma, Amália Mendes & Iris Hendrickx (2016) Using syntactic and semantic features for classifying modal values in the Portuguese language. In: Proceedings of CICLing-16, 17th international Conference on Intelligent Text Processing and Computational Linguistics, Lecture Notes in Computer Science. Springer.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:23:36Zoai:repositorio.ul.pt:10451/30783Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:46:19.269243Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using syntactic and semantic features for classifying modal values in the Portuguese language |
title |
Using syntactic and semantic features for classifying modal values in the Portuguese language |
spellingShingle |
Using syntactic and semantic features for classifying modal values in the Portuguese language Sequeira, João |
title_short |
Using syntactic and semantic features for classifying modal values in the Portuguese language |
title_full |
Using syntactic and semantic features for classifying modal values in the Portuguese language |
title_fullStr |
Using syntactic and semantic features for classifying modal values in the Portuguese language |
title_full_unstemmed |
Using syntactic and semantic features for classifying modal values in the Portuguese language |
title_sort |
Using syntactic and semantic features for classifying modal values in the Portuguese language |
author |
Sequeira, João |
author_facet |
Sequeira, João Gonçalves, Teresa Quaresma, Paulo Mendes, Amália Hendrickx, Iris |
author_role |
author |
author2 |
Gonçalves, Teresa Quaresma, Paulo Mendes, Amália Hendrickx, Iris |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Sequeira, João Gonçalves, Teresa Quaresma, Paulo Mendes, Amália Hendrickx, Iris |
description |
This paper presents a study made in a eld poorly explored in the Portuguese language { modality and its automatic tagging. Our main goal was to nd a set of attributes for the creation of automatic taggers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored eld, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntactic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three di erent sets of attributes { from trigger itself and the trigger's path (from the parse tree) and context { the system creates a tagger for each verb achieving (in almost every verb) an improvement in F1 when compared to the traditional bow approach. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2018-01-22T09:57:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/30783 |
url |
http://hdl.handle.net/10451/30783 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sequeira, João, Teresa Gonçalves, Paulo Quaresma, Amália Mendes & Iris Hendrickx (2016) Using syntactic and semantic features for classifying modal values in the Portuguese language. In: Proceedings of CICLing-16, 17th international Conference on Intelligent Text Processing and Computational Linguistics, Lecture Notes in Computer Science. Springer. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134387588038656 |