A Non-abelian Tensor Product of Hom–Lie Algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/11110/1294 |
Resumo: | Non-abelian tensor product of Hom–Lie algebras is constructed and studied. This tensor product is used to describe universal ( αα )-central extensions of Hom–Lie algebras and to establish a relation between cyclic and Milnor cyclic homologies of Hom-associative algebras satisfying certain additional condition. |
id |
RCAP_43ae5142a974725014dde0a45ca3d445 |
---|---|
oai_identifier_str |
oai:ciencipca.ipca.pt:11110/1294 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Non-abelian Tensor Product of Hom–Lie AlgebrasHom–Lie algebraHom-actionSemi-direct productDerivationNon-abelian tensor productUniversal (α)-central extensionNon-abelian tensor product of Hom–Lie algebras is constructed and studied. This tensor product is used to describe universal ( αα )-central extensions of Hom–Lie algebras and to establish a relation between cyclic and Milnor cyclic homologies of Hom-associative algebras satisfying certain additional condition.First and second authorswere supported by Ministerio de Economìa yCompetitividad (Spain) (European FEDER support included), Grant MTM2013-43687-P. Second author was supported by Xunta de Galicia, Grants EM2013/016 and GRC2013-045 (European FEDER support included) and by Shota Rustaveli National Science Foundation, Grant DI/12/5-103/11.Bulletin of the Malaysian Mathematical Sciences Society2017-06-28T16:55:57Z2017-06-28T16:55:57Z2017-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/1294oai:ciencipca.ipca.pt:11110/1294engVolume 40, Issue 3, July 20170126-6705http://hdl.handle.net/11110/1294Mirás, José Manuel CasasKhmaladze, EmzarRego, Natália Maria Pachecoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:43Zoai:ciencipca.ipca.pt:11110/1294Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:40.834941Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Non-abelian Tensor Product of Hom–Lie Algebras |
title |
A Non-abelian Tensor Product of Hom–Lie Algebras |
spellingShingle |
A Non-abelian Tensor Product of Hom–Lie Algebras Mirás, José Manuel Casas Hom–Lie algebra Hom-action Semi-direct product Derivation Non-abelian tensor product Universal (α)-central extension |
title_short |
A Non-abelian Tensor Product of Hom–Lie Algebras |
title_full |
A Non-abelian Tensor Product of Hom–Lie Algebras |
title_fullStr |
A Non-abelian Tensor Product of Hom–Lie Algebras |
title_full_unstemmed |
A Non-abelian Tensor Product of Hom–Lie Algebras |
title_sort |
A Non-abelian Tensor Product of Hom–Lie Algebras |
author |
Mirás, José Manuel Casas |
author_facet |
Mirás, José Manuel Casas Khmaladze, Emzar Rego, Natália Maria Pacheco |
author_role |
author |
author2 |
Khmaladze, Emzar Rego, Natália Maria Pacheco |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mirás, José Manuel Casas Khmaladze, Emzar Rego, Natália Maria Pacheco |
dc.subject.por.fl_str_mv |
Hom–Lie algebra Hom-action Semi-direct product Derivation Non-abelian tensor product Universal (α)-central extension |
topic |
Hom–Lie algebra Hom-action Semi-direct product Derivation Non-abelian tensor product Universal (α)-central extension |
description |
Non-abelian tensor product of Hom–Lie algebras is constructed and studied. This tensor product is used to describe universal ( αα )-central extensions of Hom–Lie algebras and to establish a relation between cyclic and Milnor cyclic homologies of Hom-associative algebras satisfying certain additional condition. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-28T16:55:57Z 2017-06-28T16:55:57Z 2017-07-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11110/1294 oai:ciencipca.ipca.pt:11110/1294 |
url |
http://hdl.handle.net/11110/1294 |
identifier_str_mv |
oai:ciencipca.ipca.pt:11110/1294 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Volume 40, Issue 3, July 2017 0126-6705 http://hdl.handle.net/11110/1294 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Bulletin of the Malaysian Mathematical Sciences Society |
publisher.none.fl_str_mv |
Bulletin of the Malaysian Mathematical Sciences Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799129886492721152 |