Machine Learning applied to student attentiveness detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/152535 |
Resumo: | Elbawab, M., & Henriques, R. (2023). Machine Learning applied to student attentiveness detection: Using emotional and non-emotional measures. Education and Information Technologies, 28(12), 15717–15737. https://doi.org/10.1007/s10639-023-11814-5---Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project—UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Fundação para a Ciência e a Tecnologia,UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS, Roberto Henriques. |
id |
RCAP_52d2f4a439b78978580dbb93600543a6 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/152535 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine Learning applied to student attentiveness detectionUsing emotional and non-emotional measuresMachine LearningE-learningLearning AnalyticsExtreme gradient boostingAccuracyAUROCEducationLibrary and Information SciencesSDG 4 - Quality EducationElbawab, M., & Henriques, R. (2023). Machine Learning applied to student attentiveness detection: Using emotional and non-emotional measures. Education and Information Technologies, 28(12), 15717–15737. https://doi.org/10.1007/s10639-023-11814-5---Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project—UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Fundação para a Ciência e a Tecnologia,UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS, Roberto Henriques.Electronic learning (e-learning) is considered the new norm of learning. One of the significant drawbacks of e-learning in comparison to the traditional classroom is that teachers cannot monitor the students' attentiveness. Previous literature used physical facial features or emotional states in detecting attentiveness. Other studies proposed combining physical and emotional facial features; however, a mixed model that only used a webcam was not tested. The study objective is to develop a machine learning (ML) model that automatically estimates students' attentiveness during e-learning classes using only a webcam. The model would help in evaluating teaching methods for e-learning. This study collected videos from seven students. The webcam of personal computers is used to obtain a video, from which we build a feature set that characterizes a student's physical and emotional state based on their face. This characterization includes eye aspect ratio (EAR), Yawn aspect ratio (YAR), head pose, and emotional states. A total of eleven variables are used in the training and validation of the model. ML algorithms are used to estimate individual students' attention levels. The ML models tested are decision trees, random forests, support vector machines (SVM), and extreme gradient boosting (XGBoost). Human observers' estimation of attention level is used as a reference. Our best attention classifier is the XGBoost, which achieved an average accuracy of 80.52%, with an AUROC OVR of 92.12%. The results indicate that a combination of emotional and non-emotional measures can generate a classifier with an accuracy comparable to other attentiveness studies. The study would also help assess the e-learning lectures through students' attentiveness. Hence will assist in developing the e-learning lectures by generating an attentiveness report for the tested lecture.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNElbawab, MohamedHenriques, Roberto2023-05-08T22:11:19Z2023-12-012023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21application/pdfhttp://hdl.handle.net/10362/152535eng1360-2357PURE: 59965790https://doi.org/10.1007/s10639-023-11814-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:34:49Zoai:run.unl.pt:10362/152535Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:55.789943Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine Learning applied to student attentiveness detection Using emotional and non-emotional measures |
title |
Machine Learning applied to student attentiveness detection |
spellingShingle |
Machine Learning applied to student attentiveness detection Elbawab, Mohamed Machine Learning E-learning Learning Analytics Extreme gradient boosting Accuracy AUROC Education Library and Information Sciences SDG 4 - Quality Education |
title_short |
Machine Learning applied to student attentiveness detection |
title_full |
Machine Learning applied to student attentiveness detection |
title_fullStr |
Machine Learning applied to student attentiveness detection |
title_full_unstemmed |
Machine Learning applied to student attentiveness detection |
title_sort |
Machine Learning applied to student attentiveness detection |
author |
Elbawab, Mohamed |
author_facet |
Elbawab, Mohamed Henriques, Roberto |
author_role |
author |
author2 |
Henriques, Roberto |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Elbawab, Mohamed Henriques, Roberto |
dc.subject.por.fl_str_mv |
Machine Learning E-learning Learning Analytics Extreme gradient boosting Accuracy AUROC Education Library and Information Sciences SDG 4 - Quality Education |
topic |
Machine Learning E-learning Learning Analytics Extreme gradient boosting Accuracy AUROC Education Library and Information Sciences SDG 4 - Quality Education |
description |
Elbawab, M., & Henriques, R. (2023). Machine Learning applied to student attentiveness detection: Using emotional and non-emotional measures. Education and Information Technologies, 28(12), 15717–15737. https://doi.org/10.1007/s10639-023-11814-5---Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project—UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Fundação para a Ciência e a Tecnologia,UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS, Roberto Henriques. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-08T22:11:19Z 2023-12-01 2023-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/152535 |
url |
http://hdl.handle.net/10362/152535 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1360-2357 PURE: 59965790 https://doi.org/10.1007/s10639-023-11814-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138137351389184 |