Detecting student attentiveness in e-learning using Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/148990 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_e923512ce829e54f706b1b5a50a5b7a4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/148990 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detecting student attentiveness in e-learning using Machine LearningMachine LearningE-learningLearning AnalyticsExtreme gradient boostingAccuracyAUROCSDG 4 - Quality educationDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceElectronic learning (e-learning) is considered the new norm of learning. One of the significant drawbacks of e-learning in comparison to the traditional classroom is that teachers cannot monitor the students' attentiveness. Previous literature used physical facial features or emotional states in detecting attentiveness. Other studies proposed combining physical and emotional facial features; however, a mixed model that only used a webcam was not tested. The study objective is to develop a machine learning (ML) model that automatically estimates students' attentiveness during e-learning classes using only a webcam. The model would help in evaluating teaching methods for e-learning. This study collected videos from seven students. The webcam of personal computers is used to obtain a video, from which we build a feature set that characterizes a student's physical and emotional state based on their face. This characterization includes eye aspect ratio (EAR), Yawn aspect ratio (YAR), head pose and emotional states. A total of eleven variables are used in the training and validation of the model. ML algorithms are used to estimate individual students' attention levels. The ML models tested are decision trees, random forests, support vector machines (SVM) and extreme gradient boosting (XGBoost). Human observers' estimation of attention level is used as a reference. Our best attention classifier is the XGBoost, which achieved an average accuracy of 80.52%, with an AUROC OVR of 92.12%. The results indicate that a combination of emotional and non-emotional measures can generate a classifier with an accuracy comparable to other attentiveness studies. The study would also help assess the e-learning lectures through students' attentiveness. Hence will assist in developing the e-learning lectures by generating an attentiveness report for the tested lecture.Henriques, Roberto André PereiraRUNElbawab, Mohamed Rabie Khalil Ibrahim2023-02-10T12:28:01Z2023-01-242023-01-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/148990TID:203220307enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:30:46Zoai:run.unl.pt:10362/148990Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:35.227715Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detecting student attentiveness in e-learning using Machine Learning |
title |
Detecting student attentiveness in e-learning using Machine Learning |
spellingShingle |
Detecting student attentiveness in e-learning using Machine Learning Elbawab, Mohamed Rabie Khalil Ibrahim Machine Learning E-learning Learning Analytics Extreme gradient boosting Accuracy AUROC SDG 4 - Quality education |
title_short |
Detecting student attentiveness in e-learning using Machine Learning |
title_full |
Detecting student attentiveness in e-learning using Machine Learning |
title_fullStr |
Detecting student attentiveness in e-learning using Machine Learning |
title_full_unstemmed |
Detecting student attentiveness in e-learning using Machine Learning |
title_sort |
Detecting student attentiveness in e-learning using Machine Learning |
author |
Elbawab, Mohamed Rabie Khalil Ibrahim |
author_facet |
Elbawab, Mohamed Rabie Khalil Ibrahim |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Elbawab, Mohamed Rabie Khalil Ibrahim |
dc.subject.por.fl_str_mv |
Machine Learning E-learning Learning Analytics Extreme gradient boosting Accuracy AUROC SDG 4 - Quality education |
topic |
Machine Learning E-learning Learning Analytics Extreme gradient boosting Accuracy AUROC SDG 4 - Quality education |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-10T12:28:01Z 2023-01-24 2023-01-24T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/148990 TID:203220307 |
url |
http://hdl.handle.net/10362/148990 |
identifier_str_mv |
TID:203220307 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138126051934208 |