On universal central extensions of Hom-Leibniz algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/11110/840 |
Resumo: | In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, universal α-central extension and α-perfect Hom-Leibniz algebra due to the fact that the composition of two central extensions of Hom-Leibniz algebras is not central. We also provide the recognition criteria for these kind of universal central extensions. We prove that an α-perfect Hom-Lie algebra admits a universal α-central extension in the categories of Hom-Lie and Hom-Leibniz algebras and we obtain the relationships between both of them. In case α = Id we recover the corresponding results on universal central extensions of Leibniz algebras. |
id |
RCAP_5594711d6930d2a7269e7e6750bfc0cc |
---|---|
oai_identifier_str |
oai:ciencipca.ipca.pt:11110/840 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On universal central extensions of Hom-Leibniz algebrasHom-Leibniz algebraco-representationhomologyuniversal α-central extensionsα-perfect.In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, universal α-central extension and α-perfect Hom-Leibniz algebra due to the fact that the composition of two central extensions of Hom-Leibniz algebras is not central. We also provide the recognition criteria for these kind of universal central extensions. We prove that an α-perfect Hom-Lie algebra admits a universal α-central extension in the categories of Hom-Lie and Hom-Leibniz algebras and we obtain the relationships between both of them. In case α = Id we recover the corresponding results on universal central extensions of Leibniz algebras.First and second authors were supported by Ministerio de Ciencia e Innovaci´on (Spain), Grant MTM2009-14464-C02 (European FEDER support included) and by Xunta de Galicia, Grant Incite09 207 215 PR. ReferencesJournal of Algebra and Its Applications2015-02-09T11:16:34Z2015-02-09T11:16:34Z2014-04-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/840oai:ciencipca.ipca.pt:11110/840eng0219-4988DOI: 10.1142/S0219498814500534http://hdl.handle.net/11110/840Casas, JoséInsua, AvelinoRego, Natáliainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:22Zoai:ciencipca.ipca.pt:11110/840Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:16.302345Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On universal central extensions of Hom-Leibniz algebras |
title |
On universal central extensions of Hom-Leibniz algebras |
spellingShingle |
On universal central extensions of Hom-Leibniz algebras Casas, José Hom-Leibniz algebra co-representation homology universal α-central extensions α-perfect. |
title_short |
On universal central extensions of Hom-Leibniz algebras |
title_full |
On universal central extensions of Hom-Leibniz algebras |
title_fullStr |
On universal central extensions of Hom-Leibniz algebras |
title_full_unstemmed |
On universal central extensions of Hom-Leibniz algebras |
title_sort |
On universal central extensions of Hom-Leibniz algebras |
author |
Casas, José |
author_facet |
Casas, José Insua, Avelino Rego, Natália |
author_role |
author |
author2 |
Insua, Avelino Rego, Natália |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Casas, José Insua, Avelino Rego, Natália |
dc.subject.por.fl_str_mv |
Hom-Leibniz algebra co-representation homology universal α-central extensions α-perfect. |
topic |
Hom-Leibniz algebra co-representation homology universal α-central extensions α-perfect. |
description |
In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, universal α-central extension and α-perfect Hom-Leibniz algebra due to the fact that the composition of two central extensions of Hom-Leibniz algebras is not central. We also provide the recognition criteria for these kind of universal central extensions. We prove that an α-perfect Hom-Lie algebra admits a universal α-central extension in the categories of Hom-Lie and Hom-Leibniz algebras and we obtain the relationships between both of them. In case α = Id we recover the corresponding results on universal central extensions of Leibniz algebras. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04-07T00:00:00Z 2015-02-09T11:16:34Z 2015-02-09T11:16:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11110/840 oai:ciencipca.ipca.pt:11110/840 |
url |
http://hdl.handle.net/11110/840 |
identifier_str_mv |
oai:ciencipca.ipca.pt:11110/840 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0219-4988 DOI: 10.1142/S0219498814500534 http://hdl.handle.net/11110/840 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Journal of Algebra and Its Applications |
publisher.none.fl_str_mv |
Journal of Algebra and Its Applications |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799129882706313216 |