On universal central extensions of Hom-Leibniz algebras

Detalhes bibliográficos
Autor(a) principal: Casas, José
Data de Publicação: 2014
Outros Autores: Insua, Avelino, Rego, Natália
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11110/840
Resumo: In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, universal α-central extension and α-perfect Hom-Leibniz algebra due to the fact that the composition of two central extensions of Hom-Leibniz algebras is not central. We also provide the recognition criteria for these kind of universal central extensions. We prove that an α-perfect Hom-Lie algebra admits a universal α-central extension in the categories of Hom-Lie and Hom-Leibniz algebras and we obtain the relationships between both of them. In case α = Id we recover the corresponding results on universal central extensions of Leibniz algebras.
id RCAP_5594711d6930d2a7269e7e6750bfc0cc
oai_identifier_str oai:ciencipca.ipca.pt:11110/840
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On universal central extensions of Hom-Leibniz algebrasHom-Leibniz algebraco-representationhomologyuniversal α-central extensionsα-perfect.In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, universal α-central extension and α-perfect Hom-Leibniz algebra due to the fact that the composition of two central extensions of Hom-Leibniz algebras is not central. We also provide the recognition criteria for these kind of universal central extensions. We prove that an α-perfect Hom-Lie algebra admits a universal α-central extension in the categories of Hom-Lie and Hom-Leibniz algebras and we obtain the relationships between both of them. In case α = Id we recover the corresponding results on universal central extensions of Leibniz algebras.First and second authors were supported by Ministerio de Ciencia e Innovaci´on (Spain), Grant MTM2009-14464-C02 (European FEDER support included) and by Xunta de Galicia, Grant Incite09 207 215 PR. ReferencesJournal of Algebra and Its Applications2015-02-09T11:16:34Z2015-02-09T11:16:34Z2014-04-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/840oai:ciencipca.ipca.pt:11110/840eng0219-4988DOI: 10.1142/S0219498814500534http://hdl.handle.net/11110/840Casas, JoséInsua, AvelinoRego, Natáliainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:22Zoai:ciencipca.ipca.pt:11110/840Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:16.302345Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On universal central extensions of Hom-Leibniz algebras
title On universal central extensions of Hom-Leibniz algebras
spellingShingle On universal central extensions of Hom-Leibniz algebras
Casas, José
Hom-Leibniz algebra
co-representation
homology
universal α-central extensions
α-perfect.
title_short On universal central extensions of Hom-Leibniz algebras
title_full On universal central extensions of Hom-Leibniz algebras
title_fullStr On universal central extensions of Hom-Leibniz algebras
title_full_unstemmed On universal central extensions of Hom-Leibniz algebras
title_sort On universal central extensions of Hom-Leibniz algebras
author Casas, José
author_facet Casas, José
Insua, Avelino
Rego, Natália
author_role author
author2 Insua, Avelino
Rego, Natália
author2_role author
author
dc.contributor.author.fl_str_mv Casas, José
Insua, Avelino
Rego, Natália
dc.subject.por.fl_str_mv Hom-Leibniz algebra
co-representation
homology
universal α-central extensions
α-perfect.
topic Hom-Leibniz algebra
co-representation
homology
universal α-central extensions
α-perfect.
description In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, universal α-central extension and α-perfect Hom-Leibniz algebra due to the fact that the composition of two central extensions of Hom-Leibniz algebras is not central. We also provide the recognition criteria for these kind of universal central extensions. We prove that an α-perfect Hom-Lie algebra admits a universal α-central extension in the categories of Hom-Lie and Hom-Leibniz algebras and we obtain the relationships between both of them. In case α = Id we recover the corresponding results on universal central extensions of Leibniz algebras.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-07T00:00:00Z
2015-02-09T11:16:34Z
2015-02-09T11:16:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11110/840
oai:ciencipca.ipca.pt:11110/840
url http://hdl.handle.net/11110/840
identifier_str_mv oai:ciencipca.ipca.pt:11110/840
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0219-4988
DOI: 10.1142/S0219498814500534
http://hdl.handle.net/11110/840
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Journal of Algebra and Its Applications
publisher.none.fl_str_mv Journal of Algebra and Its Applications
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129882706313216