Reduction of Jacobi manifolds via Dirac structures theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4623 https://doi.org/10.1016/j.difgeo.2005.06.003 |
Resumo: | We first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M,[Lambda],E) for which 1 is an admissible function and Jacobi quotient manifolds of M. We study Jacobi reductions from the point of view of Dirac structures theory and we present some examples and applications. |
id |
RCAP_7d0a10e67e72230b625267b80125106c |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4623 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Reduction of Jacobi manifolds via Dirac structures theoryDirac structuresGeneralized Lie bialgebroidsGeneralized Courant algebroidsJacobi manifoldsReductionWe first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M,[Lambda],E) for which 1 is an admissible function and Jacobi quotient manifolds of M. We study Jacobi reductions from the point of view of Dirac structures theory and we present some examples and applications.http://www.sciencedirect.com/science/article/B6TYY-4GMS96S-1/1/cbadf5fdc8177fad63f09233c6d6ec032005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4623http://hdl.handle.net/10316/4623https://doi.org/10.1016/j.difgeo.2005.06.003engDifferential Geometry and its Applications. 23:3 (2005) 282-304Petalidou, FaniCosta, Joana M. Nunes dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:48:57Zoai:estudogeral.uc.pt:10316/4623Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.726857Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Reduction of Jacobi manifolds via Dirac structures theory |
title |
Reduction of Jacobi manifolds via Dirac structures theory |
spellingShingle |
Reduction of Jacobi manifolds via Dirac structures theory Petalidou, Fani Dirac structures Generalized Lie bialgebroids Generalized Courant algebroids Jacobi manifolds Reduction |
title_short |
Reduction of Jacobi manifolds via Dirac structures theory |
title_full |
Reduction of Jacobi manifolds via Dirac structures theory |
title_fullStr |
Reduction of Jacobi manifolds via Dirac structures theory |
title_full_unstemmed |
Reduction of Jacobi manifolds via Dirac structures theory |
title_sort |
Reduction of Jacobi manifolds via Dirac structures theory |
author |
Petalidou, Fani |
author_facet |
Petalidou, Fani Costa, Joana M. Nunes da |
author_role |
author |
author2 |
Costa, Joana M. Nunes da |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Petalidou, Fani Costa, Joana M. Nunes da |
dc.subject.por.fl_str_mv |
Dirac structures Generalized Lie bialgebroids Generalized Courant algebroids Jacobi manifolds Reduction |
topic |
Dirac structures Generalized Lie bialgebroids Generalized Courant algebroids Jacobi manifolds Reduction |
description |
We first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M,[Lambda],E) for which 1 is an admissible function and Jacobi quotient manifolds of M. We study Jacobi reductions from the point of view of Dirac structures theory and we present some examples and applications. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4623 http://hdl.handle.net/10316/4623 https://doi.org/10.1016/j.difgeo.2005.06.003 |
url |
http://hdl.handle.net/10316/4623 https://doi.org/10.1016/j.difgeo.2005.06.003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Differential Geometry and its Applications. 23:3 (2005) 282-304 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133898388537344 |