Reduction of Jacobi manifolds via Dirac structures theory

Detalhes bibliográficos
Autor(a) principal: Petalidou, Fani
Data de Publicação: 2005
Outros Autores: Costa, Joana M. Nunes da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4623
https://doi.org/10.1016/j.difgeo.2005.06.003
Resumo: We first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M,[Lambda],E) for which 1 is an admissible function and Jacobi quotient manifolds of M. We study Jacobi reductions from the point of view of Dirac structures theory and we present some examples and applications.
id RCAP_7d0a10e67e72230b625267b80125106c
oai_identifier_str oai:estudogeral.uc.pt:10316/4623
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Reduction of Jacobi manifolds via Dirac structures theoryDirac structuresGeneralized Lie bialgebroidsGeneralized Courant algebroidsJacobi manifoldsReductionWe first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M,[Lambda],E) for which 1 is an admissible function and Jacobi quotient manifolds of M. We study Jacobi reductions from the point of view of Dirac structures theory and we present some examples and applications.http://www.sciencedirect.com/science/article/B6TYY-4GMS96S-1/1/cbadf5fdc8177fad63f09233c6d6ec032005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4623http://hdl.handle.net/10316/4623https://doi.org/10.1016/j.difgeo.2005.06.003engDifferential Geometry and its Applications. 23:3 (2005) 282-304Petalidou, FaniCosta, Joana M. Nunes dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:48:57Zoai:estudogeral.uc.pt:10316/4623Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.726857Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Reduction of Jacobi manifolds via Dirac structures theory
title Reduction of Jacobi manifolds via Dirac structures theory
spellingShingle Reduction of Jacobi manifolds via Dirac structures theory
Petalidou, Fani
Dirac structures
Generalized Lie bialgebroids
Generalized Courant algebroids
Jacobi manifolds
Reduction
title_short Reduction of Jacobi manifolds via Dirac structures theory
title_full Reduction of Jacobi manifolds via Dirac structures theory
title_fullStr Reduction of Jacobi manifolds via Dirac structures theory
title_full_unstemmed Reduction of Jacobi manifolds via Dirac structures theory
title_sort Reduction of Jacobi manifolds via Dirac structures theory
author Petalidou, Fani
author_facet Petalidou, Fani
Costa, Joana M. Nunes da
author_role author
author2 Costa, Joana M. Nunes da
author2_role author
dc.contributor.author.fl_str_mv Petalidou, Fani
Costa, Joana M. Nunes da
dc.subject.por.fl_str_mv Dirac structures
Generalized Lie bialgebroids
Generalized Courant algebroids
Jacobi manifolds
Reduction
topic Dirac structures
Generalized Lie bialgebroids
Generalized Courant algebroids
Jacobi manifolds
Reduction
description We first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M,[Lambda],E) for which 1 is an admissible function and Jacobi quotient manifolds of M. We study Jacobi reductions from the point of view of Dirac structures theory and we present some examples and applications.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4623
http://hdl.handle.net/10316/4623
https://doi.org/10.1016/j.difgeo.2005.06.003
url http://hdl.handle.net/10316/4623
https://doi.org/10.1016/j.difgeo.2005.06.003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Differential Geometry and its Applications. 23:3 (2005) 282-304
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133898388537344