Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/31540 https://doi.org/10.18086/eurosun.2016.09.03 |
Resumo: | The design and optimization of solar power systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest, usually assess by one typical meteorological year (TMY). Even with today’s technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work evaluates a methodology based on cluster analysis for selecting number of individual days able to represent the long-term performance of a solar energy system. This procedure permits to drastically reduce computational effort related to the calculation of a solar power plant energy yield by simulating a reduced number of days from a TMY, facilitating a fast and optimal design of the plant. |
id |
RCAP_8f1e4804ab153c0bfe0e437cb72f3221 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/31540 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster AnalysisThe design and optimization of solar power systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest, usually assess by one typical meteorological year (TMY). Even with today’s technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work evaluates a methodology based on cluster analysis for selecting number of individual days able to represent the long-term performance of a solar energy system. This procedure permits to drastically reduce computational effort related to the calculation of a solar power plant energy yield by simulating a reduced number of days from a TMY, facilitating a fast and optimal design of the plant.Proceeding ISES2022-03-30T13:52:56Z2022-03-302016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/31540http://hdl.handle.net/10174/31540https://doi.org/10.18086/eurosun.2016.09.03pornaonaonaolguerreiro@uevora.ptndacavaco@uevora.ptndcollarespereira@uevora.ptGuerreiro, LuisFernández-Peruchena, Carlos MCavaco, AfonsoMartin, GastonManuel, Collares Pererirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:31:28Zoai:dspace.uevora.pt:10174/31540Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:20:45.264443Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis |
title |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis |
spellingShingle |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis Guerreiro, Luis |
title_short |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis |
title_full |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis |
title_fullStr |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis |
title_full_unstemmed |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis |
title_sort |
Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis |
author |
Guerreiro, Luis |
author_facet |
Guerreiro, Luis Fernández-Peruchena, Carlos M Cavaco, Afonso Martin, Gaston Manuel, Collares Pererira |
author_role |
author |
author2 |
Fernández-Peruchena, Carlos M Cavaco, Afonso Martin, Gaston Manuel, Collares Pererira |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Guerreiro, Luis Fernández-Peruchena, Carlos M Cavaco, Afonso Martin, Gaston Manuel, Collares Pererira |
description |
The design and optimization of solar power systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest, usually assess by one typical meteorological year (TMY). Even with today’s technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work evaluates a methodology based on cluster analysis for selecting number of individual days able to represent the long-term performance of a solar energy system. This procedure permits to drastically reduce computational effort related to the calculation of a solar power plant energy yield by simulating a reduced number of days from a TMY, facilitating a fast and optimal design of the plant. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2022-03-30T13:52:56Z 2022-03-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/31540 http://hdl.handle.net/10174/31540 https://doi.org/10.18086/eurosun.2016.09.03 |
url |
http://hdl.handle.net/10174/31540 https://doi.org/10.18086/eurosun.2016.09.03 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
nao nao nao lguerreiro@uevora.pt nd acavaco@uevora.pt nd collarespereira@uevora.pt |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Proceeding ISES |
publisher.none.fl_str_mv |
Proceeding ISES |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136688963846144 |