Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis

Detalhes bibliográficos
Autor(a) principal: Guerreiro, Luis
Data de Publicação: 2016
Outros Autores: Fernández-Peruchena, Carlos M, Cavaco, Afonso, Martin, Gaston, Manuel, Collares Pererira
Tipo de documento: Artigo de conferência
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/31540
https://doi.org/10.18086/eurosun.2016.09.03
Resumo: The design and optimization of solar power systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest, usually assess by one typical meteorological year (TMY). Even with today’s technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work evaluates a methodology based on cluster analysis for selecting number of individual days able to represent the long-term performance of a solar energy system. This procedure permits to drastically reduce computational effort related to the calculation of a solar power plant energy yield by simulating a reduced number of days from a TMY, facilitating a fast and optimal design of the plant.
id RCAP_8f1e4804ab153c0bfe0e437cb72f3221
oai_identifier_str oai:dspace.uevora.pt:10174/31540
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster AnalysisThe design and optimization of solar power systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest, usually assess by one typical meteorological year (TMY). Even with today’s technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work evaluates a methodology based on cluster analysis for selecting number of individual days able to represent the long-term performance of a solar energy system. This procedure permits to drastically reduce computational effort related to the calculation of a solar power plant energy yield by simulating a reduced number of days from a TMY, facilitating a fast and optimal design of the plant.Proceeding ISES2022-03-30T13:52:56Z2022-03-302016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/31540http://hdl.handle.net/10174/31540https://doi.org/10.18086/eurosun.2016.09.03pornaonaonaolguerreiro@uevora.ptndacavaco@uevora.ptndcollarespereira@uevora.ptGuerreiro, LuisFernández-Peruchena, Carlos MCavaco, AfonsoMartin, GastonManuel, Collares Pererirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:31:28Zoai:dspace.uevora.pt:10174/31540Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:20:45.264443Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
title Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
spellingShingle Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
Guerreiro, Luis
title_short Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
title_full Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
title_fullStr Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
title_full_unstemmed Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
title_sort Experimental Validation of a Novel Methodology for Fast an Accurate Analysis of Solar Energy Yields Based on Cluster Analysis
author Guerreiro, Luis
author_facet Guerreiro, Luis
Fernández-Peruchena, Carlos M
Cavaco, Afonso
Martin, Gaston
Manuel, Collares Pererira
author_role author
author2 Fernández-Peruchena, Carlos M
Cavaco, Afonso
Martin, Gaston
Manuel, Collares Pererira
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Guerreiro, Luis
Fernández-Peruchena, Carlos M
Cavaco, Afonso
Martin, Gaston
Manuel, Collares Pererira
description The design and optimization of solar power systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest, usually assess by one typical meteorological year (TMY). Even with today’s technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work evaluates a methodology based on cluster analysis for selecting number of individual days able to represent the long-term performance of a solar energy system. This procedure permits to drastically reduce computational effort related to the calculation of a solar power plant energy yield by simulating a reduced number of days from a TMY, facilitating a fast and optimal design of the plant.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2022-03-30T13:52:56Z
2022-03-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/31540
http://hdl.handle.net/10174/31540
https://doi.org/10.18086/eurosun.2016.09.03
url http://hdl.handle.net/10174/31540
https://doi.org/10.18086/eurosun.2016.09.03
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv nao
nao
nao
lguerreiro@uevora.pt
nd
acavaco@uevora.pt
nd
collarespereira@uevora.pt
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Proceeding ISES
publisher.none.fl_str_mv Proceeding ISES
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136688963846144