A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/21518 |
Resumo: | This data article describes a hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems. |
id |
RCAP_a084cca52a6ef86a68121cffe0a0399d |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/21518 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)ClassificationClusteringData miningData scienceHospitalityMachine learningRegressionRFM modelingThis data article describes a hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.Elsevier2021-01-25T16:35:47Z2020-01-01T00:00:00Z20202021-01-25T16:35:06Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/21518eng2352-340910.1016/j.dib.2020.106583Antonio, N.De Almeida, A.Nunes, L.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:51:21Zoai:repositorio.iscte-iul.pt:10071/21518Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:25:25.781542Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
spellingShingle |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) Antonio, N. Classification Clustering Data mining Data science Hospitality Machine learning Regression RFM modeling |
title_short |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title_full |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title_fullStr |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title_full_unstemmed |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title_sort |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
author |
Antonio, N. |
author_facet |
Antonio, N. De Almeida, A. Nunes, L. |
author_role |
author |
author2 |
De Almeida, A. Nunes, L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Antonio, N. De Almeida, A. Nunes, L. |
dc.subject.por.fl_str_mv |
Classification Clustering Data mining Data science Hospitality Machine learning Regression RFM modeling |
topic |
Classification Clustering Data mining Data science Hospitality Machine learning Regression RFM modeling |
description |
This data article describes a hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01T00:00:00Z 2020 2021-01-25T16:35:47Z 2021-01-25T16:35:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/21518 |
url |
http://hdl.handle.net/10071/21518 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2352-3409 10.1016/j.dib.2020.106583 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134817398292480 |