A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)

Detalhes bibliográficos
Autor(a) principal: Antonio, N.
Data de Publicação: 2020
Outros Autores: De Almeida, A., Nunes, L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/21518
Resumo: This data article describes a hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.
id RCAP_a084cca52a6ef86a68121cffe0a0399d
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/21518
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)ClassificationClusteringData miningData scienceHospitalityMachine learningRegressionRFM modelingThis data article describes a hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.Elsevier2021-01-25T16:35:47Z2020-01-01T00:00:00Z20202021-01-25T16:35:06Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/21518eng2352-340910.1016/j.dib.2020.106583Antonio, N.De Almeida, A.Nunes, L.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:51:21Zoai:repositorio.iscte-iul.pt:10071/21518Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:25:25.781542Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
title A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
spellingShingle A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
Antonio, N.
Classification
Clustering
Data mining
Data science
Hospitality
Machine learning
Regression
RFM modeling
title_short A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
title_full A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
title_fullStr A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
title_full_unstemmed A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
title_sort A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
author Antonio, N.
author_facet Antonio, N.
De Almeida, A.
Nunes, L.
author_role author
author2 De Almeida, A.
Nunes, L.
author2_role author
author
dc.contributor.author.fl_str_mv Antonio, N.
De Almeida, A.
Nunes, L.
dc.subject.por.fl_str_mv Classification
Clustering
Data mining
Data science
Hospitality
Machine learning
Regression
RFM modeling
topic Classification
Clustering
Data mining
Data science
Hospitality
Machine learning
Regression
RFM modeling
description This data article describes a hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01T00:00:00Z
2020
2021-01-25T16:35:47Z
2021-01-25T16:35:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/21518
url http://hdl.handle.net/10071/21518
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2352-3409
10.1016/j.dib.2020.106583
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134817398292480