Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice

Detalhes bibliográficos
Autor(a) principal: Carrascosa, Conrado
Data de Publicação: 2014
Outros Autores: Millán, Rafael, Saavedra, Pedro, Jaber, José Raduán, Montenegro, Tania, Raposo, António, Pérez, Esteban, Sanjuán, Esther
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.26/6697
Resumo: The final publication is available at Springer.
id RCAP_a11069193cf2dd829fc17f4ee507e3f6
oai_identifier_str oai:comum.rcaap.pt:10400.26/6697
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on iceSea bassMicrobiologyStatisticsMicroorganismsPredictive modellingThe final publication is available at Springer."The purpose of this paper was to estimate microbial growth through predictive modelling as a key element in determining the quantitative microbiological contamination of sea bass stored on ice and cultivated in different seasons of the year. In the present study, two different statistical models were used to analyse changes in microbial growth in whole, ungutted sea bass (Dicentrarchus labrax) stored on ice. The total counts of aerobic mesophilic and psychrotrophic bacteria, Pseudomonas sp., Aeromonas sp., Shewanella putrefaciens, Enterobacteriaceae, sulphide-reducing Clostridium and Photobacterium phosphoreum were determined in muscle, skin and gills over an 18-day period using traditional methods and evaluating the seasonal effect. The results showed that specific spoilage bacteria (SSB) were dominant in all tissues analysed but were mainly found in the gills. Predictive modelling showed a seasonal effect among the fish analysed. The application of these models can contribute to the improvement of food safety control by improving knowledge of the microorganisms responsible for the spoilage and deterioration of sea bass."SpringerRepositório ComumCarrascosa, ConradoMillán, RafaelSaavedra, PedroJaber, José RaduánMontenegro, TaniaRaposo, AntónioPérez, EstebanSanjuán, Esther2015-01-31T01:30:06Z2014-02-01T00:00:00Z2014-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/6697engInternational Journal of Food Science & Technology. Volume 49, Issue 2, pages 354–363, February 20141365-262110.1111/ijfs.12307info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-10-06T14:51:29Zoai:comum.rcaap.pt:10400.26/6697Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:06:05.187901Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice
title Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice
spellingShingle Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice
Carrascosa, Conrado
Sea bass
Microbiology
Statistics
Microorganisms
Predictive modelling
title_short Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice
title_full Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice
title_fullStr Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice
title_full_unstemmed Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice
title_sort Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) 1 stored on ice
author Carrascosa, Conrado
author_facet Carrascosa, Conrado
Millán, Rafael
Saavedra, Pedro
Jaber, José Raduán
Montenegro, Tania
Raposo, António
Pérez, Esteban
Sanjuán, Esther
author_role author
author2 Millán, Rafael
Saavedra, Pedro
Jaber, José Raduán
Montenegro, Tania
Raposo, António
Pérez, Esteban
Sanjuán, Esther
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Carrascosa, Conrado
Millán, Rafael
Saavedra, Pedro
Jaber, José Raduán
Montenegro, Tania
Raposo, António
Pérez, Esteban
Sanjuán, Esther
dc.subject.por.fl_str_mv Sea bass
Microbiology
Statistics
Microorganisms
Predictive modelling
topic Sea bass
Microbiology
Statistics
Microorganisms
Predictive modelling
description The final publication is available at Springer.
publishDate 2014
dc.date.none.fl_str_mv 2014-02-01T00:00:00Z
2014-02-01T00:00:00Z
2015-01-31T01:30:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/6697
url http://hdl.handle.net/10400.26/6697
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Food Science & Technology. Volume 49, Issue 2, pages 354–363, February 2014
1365-2621
10.1111/ijfs.12307
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129931443077120