Mathematics and Mother Tongue Academic Achievement
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/143711 |
Resumo: | Nunes, C., Beatriz-Afonso, A., Cruz-jesus, F., Oliveira, T., & Castelli, M. (2022). Mathematics and Mother Tongue Academic Achievement: A Machine Learning Approach. Emerging Science Journal, 6(Special Issue: Current Issues, Trends, and New Ideas in Education), 137-149. https://doi.org/10.28991/ESJ-2022-SIED-010 ----This study was funded by FCT – Fundação para a Ciência e Tecnologia (DSAIPA/DS/0032/2018). Acknowledgements: We also gratefully acknowledge financial support from FCT Fundação para a Ciência e a Tecnologia (Portugal), national funding through research grant Information Management Research Center – MagIC/NOVA IMS (UIDB/04152/2020). |
id |
RCAP_a7cec65ea63d1d9f19331563ba77e11f |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143711 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Mathematics and Mother Tongue Academic AchievementA Machine Learning ApproachAcademic AchievementEducationAcademic AchievemenNetworksMachine LearningGeneralSDG 4 - Quality EducationSDG 8 - Decent Work and Economic GrowthSDG 10 - Reduced InequalitiesNunes, C., Beatriz-Afonso, A., Cruz-jesus, F., Oliveira, T., & Castelli, M. (2022). Mathematics and Mother Tongue Academic Achievement: A Machine Learning Approach. Emerging Science Journal, 6(Special Issue: Current Issues, Trends, and New Ideas in Education), 137-149. https://doi.org/10.28991/ESJ-2022-SIED-010 ----This study was funded by FCT – Fundação para a Ciência e Tecnologia (DSAIPA/DS/0032/2018). Acknowledgements: We also gratefully acknowledge financial support from FCT Fundação para a Ciência e a Tecnologia (Portugal), national funding through research grant Information Management Research Center – MagIC/NOVA IMS (UIDB/04152/2020).Academic achievement is of great interest to education researchers and practitioners. Several academic achievement determinants have been described in the literature, mostly identified by analyzing primary (sample) data with classic statistical methods. Despite their superiority, only recently have machine learning methods started to be applied systematically in this context. However, even when this is the case, the ability to draw conclusions is greatly hampered by the "black-box" effect these methods entail. We contribute to the literature by combining the efficiency of machine learning methods, trained with data from virtually every public upper-secondary student of a European country, with the ability to quantify exactly how much each driver impacts academic achievement on Mathematics and mother tongue, through the use of prototypes. Our results indicate that the most important general academic achievement inhibitor is the previous retainment. Legal guardian's education is a critical driver, especially in Mathematics; whereas gender is especially important for mother tongue, as female students perform better. Implications for research and practice are presented.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNNunes, CatarinaBeatriz-Afonso, AnaCruz-jesus, FredericoOliveira, TiagoCastelli, Mauro2022-09-13T22:47:37Z2022-09-102022-09-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13application/pdfhttp://hdl.handle.net/10362/143711eng2610-9182PURE: 46517955https://doi.org/10.28991/ESJ-2022-SIED-010info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:22:20Zoai:run.unl.pt:10362/143711Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:05.877808Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Mathematics and Mother Tongue Academic Achievement A Machine Learning Approach |
title |
Mathematics and Mother Tongue Academic Achievement |
spellingShingle |
Mathematics and Mother Tongue Academic Achievement Nunes, Catarina Academic Achievement Education Academic Achievemen Networks Machine Learning General SDG 4 - Quality Education SDG 8 - Decent Work and Economic Growth SDG 10 - Reduced Inequalities |
title_short |
Mathematics and Mother Tongue Academic Achievement |
title_full |
Mathematics and Mother Tongue Academic Achievement |
title_fullStr |
Mathematics and Mother Tongue Academic Achievement |
title_full_unstemmed |
Mathematics and Mother Tongue Academic Achievement |
title_sort |
Mathematics and Mother Tongue Academic Achievement |
author |
Nunes, Catarina |
author_facet |
Nunes, Catarina Beatriz-Afonso, Ana Cruz-jesus, Frederico Oliveira, Tiago Castelli, Mauro |
author_role |
author |
author2 |
Beatriz-Afonso, Ana Cruz-jesus, Frederico Oliveira, Tiago Castelli, Mauro |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Nunes, Catarina Beatriz-Afonso, Ana Cruz-jesus, Frederico Oliveira, Tiago Castelli, Mauro |
dc.subject.por.fl_str_mv |
Academic Achievement Education Academic Achievemen Networks Machine Learning General SDG 4 - Quality Education SDG 8 - Decent Work and Economic Growth SDG 10 - Reduced Inequalities |
topic |
Academic Achievement Education Academic Achievemen Networks Machine Learning General SDG 4 - Quality Education SDG 8 - Decent Work and Economic Growth SDG 10 - Reduced Inequalities |
description |
Nunes, C., Beatriz-Afonso, A., Cruz-jesus, F., Oliveira, T., & Castelli, M. (2022). Mathematics and Mother Tongue Academic Achievement: A Machine Learning Approach. Emerging Science Journal, 6(Special Issue: Current Issues, Trends, and New Ideas in Education), 137-149. https://doi.org/10.28991/ESJ-2022-SIED-010 ----This study was funded by FCT – Fundação para a Ciência e Tecnologia (DSAIPA/DS/0032/2018). Acknowledgements: We also gratefully acknowledge financial support from FCT Fundação para a Ciência e a Tecnologia (Portugal), national funding through research grant Information Management Research Center – MagIC/NOVA IMS (UIDB/04152/2020). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-13T22:47:37Z 2022-09-10 2022-09-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143711 |
url |
http://hdl.handle.net/10362/143711 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2610-9182 PURE: 46517955 https://doi.org/10.28991/ESJ-2022-SIED-010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138106144718848 |