How to deal with extreme observations in empirical finance: an application to capital markets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/4327 |
Resumo: | In the last few years, Extreme Value Theory (EVT) has gained increased importance in modeling extreme observations in all social sciences. This is especially true in finance, since EVT is a tool used to consider probabilities associated with extreme and rare events with catastrophic consequences, as happened in the Sub-prime crisis in 2007. To model extreme observations, we use two different statistical distribution families in this thesis: Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD). In this thesis, EVT methods were used to investigate and fit the empirical distribution of the monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 indices to the theoretical GEV and GPD distributions. We have applied two approaches of extreme value theory, the Block Maxima and the Peaks Over Threshold (POT) approach, as well as the parametric approach of the Maximum Likelihood Estimate Method (MLE) for the distribution parameter estimation and the non-parametric approach of the Hill estimator. As a result of the application, we have seen that in the GEV distribution application, our data was well represented by the Fréchet and Weibull distributions. On the other hand, in the GPD distribution, using the parametric approach MLE, our data was mostly well represented by the Exponential and Beta distributions. However, applying the GPD using the non-parametric approach of the Hill estimator for the tail index, we have seen that the monthly maximum returns of our indices are well represented by the Pareto distribution. |
id |
RCAP_a83a54ce5f926ce0a32aaac836bbfe95 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/4327 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
How to deal with extreme observations in empirical finance: an application to capital marketsExtreme value theoryGeneralized Extreme Value (GEV)Generalized Pareto Distribution (GPD)Stock market returnsTeoria de valores extremosDistribuição generalizada de valores extremosDistribuição generalizada de paretoRetornos de mercados de capitaisIn the last few years, Extreme Value Theory (EVT) has gained increased importance in modeling extreme observations in all social sciences. This is especially true in finance, since EVT is a tool used to consider probabilities associated with extreme and rare events with catastrophic consequences, as happened in the Sub-prime crisis in 2007. To model extreme observations, we use two different statistical distribution families in this thesis: Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD). In this thesis, EVT methods were used to investigate and fit the empirical distribution of the monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 indices to the theoretical GEV and GPD distributions. We have applied two approaches of extreme value theory, the Block Maxima and the Peaks Over Threshold (POT) approach, as well as the parametric approach of the Maximum Likelihood Estimate Method (MLE) for the distribution parameter estimation and the non-parametric approach of the Hill estimator. As a result of the application, we have seen that in the GEV distribution application, our data was well represented by the Fréchet and Weibull distributions. On the other hand, in the GPD distribution, using the parametric approach MLE, our data was mostly well represented by the Exponential and Beta distributions. However, applying the GPD using the non-parametric approach of the Hill estimator for the tail index, we have seen that the monthly maximum returns of our indices are well represented by the Pareto distribution.Nos últimos anos, a Teoria de Valores Extremos (TVE) tem ganho uma importância crescente no estudo de observações extremas em todas as ciências. Isto é especialemente verdade em finanças, uma vez que a TVE é uma ferramenta utilizada para analisar as probabilidades associadas a eventos extremos e raros com consequências catastróficas, como a crise do Sub-Prime em 2007. Para modelar observações extremas, usamos duas famílias de distribuição estatísticas: Distribuição Generalizada de Valores Extremos (GEV) e a Distribuição Generalizada de Pareto (GPD). Nesta tese, a TVE foi utilizada para investigar e ajustar a distribuição empírica dos retornos maximos e minimos mensais dos índices bolsistas FTSE 100, NIKKEI 225 e do S&P500 às ditribuições teóricas da GEV e GPD. Aplicamos duas abordagens na aplicação da TVE, o método do Block Maxima e o método dos excessos de nível (POT), onde para a estimação dos parâmetros da distribuição recorremos ao método paramétrico da Máxima Verosimilhança, bem como ao método não-paramétrico através do estimador Hill. Como resultado do estudo empírico na aplicação da GEV, verificamos que as séries são bem representadas pela distribuição de Fréchet e Weibull. Por outro lado, na aplicação da GPD, utilizando a abordagem paramétrica para o cálculo dos parâmetros da distribuição, as séries são bem representadas pelas distribuições exponencial e Beta. No entanto, a aplicação do GPD utilizando a abordagem não-paramétrica, verificou-se que a série dos retornos máximos mensais dos índices são bem representados pela distribuição de Pareto.2013-01-08T11:45:11Z2011-01-01T00:00:00Z20112011-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/4327engSilva, Josué de Sousa einfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:53:49Zoai:repositorio.iscte-iul.pt:10071/4327Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:27:02.205984Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
How to deal with extreme observations in empirical finance: an application to capital markets |
title |
How to deal with extreme observations in empirical finance: an application to capital markets |
spellingShingle |
How to deal with extreme observations in empirical finance: an application to capital markets Silva, Josué de Sousa e Extreme value theory Generalized Extreme Value (GEV) Generalized Pareto Distribution (GPD) Stock market returns Teoria de valores extremos Distribuição generalizada de valores extremos Distribuição generalizada de pareto Retornos de mercados de capitais |
title_short |
How to deal with extreme observations in empirical finance: an application to capital markets |
title_full |
How to deal with extreme observations in empirical finance: an application to capital markets |
title_fullStr |
How to deal with extreme observations in empirical finance: an application to capital markets |
title_full_unstemmed |
How to deal with extreme observations in empirical finance: an application to capital markets |
title_sort |
How to deal with extreme observations in empirical finance: an application to capital markets |
author |
Silva, Josué de Sousa e |
author_facet |
Silva, Josué de Sousa e |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Josué de Sousa e |
dc.subject.por.fl_str_mv |
Extreme value theory Generalized Extreme Value (GEV) Generalized Pareto Distribution (GPD) Stock market returns Teoria de valores extremos Distribuição generalizada de valores extremos Distribuição generalizada de pareto Retornos de mercados de capitais |
topic |
Extreme value theory Generalized Extreme Value (GEV) Generalized Pareto Distribution (GPD) Stock market returns Teoria de valores extremos Distribuição generalizada de valores extremos Distribuição generalizada de pareto Retornos de mercados de capitais |
description |
In the last few years, Extreme Value Theory (EVT) has gained increased importance in modeling extreme observations in all social sciences. This is especially true in finance, since EVT is a tool used to consider probabilities associated with extreme and rare events with catastrophic consequences, as happened in the Sub-prime crisis in 2007. To model extreme observations, we use two different statistical distribution families in this thesis: Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD). In this thesis, EVT methods were used to investigate and fit the empirical distribution of the monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 indices to the theoretical GEV and GPD distributions. We have applied two approaches of extreme value theory, the Block Maxima and the Peaks Over Threshold (POT) approach, as well as the parametric approach of the Maximum Likelihood Estimate Method (MLE) for the distribution parameter estimation and the non-parametric approach of the Hill estimator. As a result of the application, we have seen that in the GEV distribution application, our data was well represented by the Fréchet and Weibull distributions. On the other hand, in the GPD distribution, using the parametric approach MLE, our data was mostly well represented by the Exponential and Beta distributions. However, applying the GPD using the non-parametric approach of the Hill estimator for the tail index, we have seen that the monthly maximum returns of our indices are well represented by the Pareto distribution. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01T00:00:00Z 2011 2011-04 2013-01-08T11:45:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/4327 |
url |
http://hdl.handle.net/10071/4327 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134833649123328 |