Advancing microbiome research with machine learning

Detalhes bibliográficos
Autor(a) principal: D’Elia, Domenica
Data de Publicação: 2023
Outros Autores: Truu, Jaak, Lahti, Leo, Berland, Magali, Papoutsoglou, Georgios, Ceci, Michelangelo, Zomer, Aldert, Lopes, Marta B., Ibrahimi, Eliana, Gruca, Aleksandra, Nechyporenko, Alina, Frohme, Marcus, Klammsteiner, Thomas, Pau, Enrique Carrillo de Santa, Marcos-Zambrano, Laura Judith, Hron, Karel, Pio, Gianvito, Simeon, Andrea, Suharoschi, Ramona, Moreno-Indias, Isabel, Temko, Andriy, Nedyalkova, Miroslava, Apostol, Elena Simona, Truică, Ciprian Octavian, Shigdel, Rajesh, Telalović, Jasminka Hasić, Bongcam-Rudloff, Erik, Przymus, Piotr, Jordamović, Naida Babić, Falquet, Laurent, Tarazona, Sonia, Sampri, Alexia, Isola, Gaetano, Pérez-Serrano, David, Trajkovik, Vladimir, Klucar, Lubos, Loncar-Turukalo, Tatjana, Havulinna, Aki S., Jansen, Christian, Bertelsen, Randi J., Claesson, Marcus Joakim
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/164896
Resumo: Funding Information: The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study is based upon work from COST Action ML4Microbiome “Statistical and machine learning techniques in human microbiome studies” (CA18131), supported by COST (European Cooperation in Science and Technology), www.cost.eu . MB acknowledges support through the Metagenopolis grant ANR-11-DPBS-0001. IM-I acknowledges support by the “Miguel Servet Type II” program (CPII21/00013) of the ISCIII-Madrid (Spain), co-financed by the FEDER. Publisher Copyright: Copyright © 2023 D’Elia, Truu, Lahti, Berland, Papoutsoglou, Ceci, Zomer, Lopes, Ibrahimi, Gruca, Nechyporenko, Frohme, Klammsteiner, Pau, Marcos-Zambrano, Hron, Pio, Simeon, Suharoschi, Moreno-Indias, Temko, Nedyalkova, Apostol, Truică, Shigdel, Telalović, Bongcam-Rudloff, Przymus, Jordamović, Falquet, Tarazona, Sampri, Isola, Pérez-Serrano, Trajkovik, Klucar, Loncar-Turukalo, Havulinna, Jansen, Bertelsen and Claesson.
id RCAP_b4c7af001ded0ae277b1515df0bf27da
oai_identifier_str oai:run.unl.pt:10362/164896
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Advancing microbiome research with machine learningkey findings from the ML4Microbiome COST actionartificial intelligencebest practicesmachine learningmicrobiomestandardsMicrobiologyMicrobiology (medical)SDG 3 - Good Health and Well-beingFunding Information: The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study is based upon work from COST Action ML4Microbiome “Statistical and machine learning techniques in human microbiome studies” (CA18131), supported by COST (European Cooperation in Science and Technology), www.cost.eu . MB acknowledges support through the Metagenopolis grant ANR-11-DPBS-0001. IM-I acknowledges support by the “Miguel Servet Type II” program (CPII21/00013) of the ISCIII-Madrid (Spain), co-financed by the FEDER. Publisher Copyright: Copyright © 2023 D’Elia, Truu, Lahti, Berland, Papoutsoglou, Ceci, Zomer, Lopes, Ibrahimi, Gruca, Nechyporenko, Frohme, Klammsteiner, Pau, Marcos-Zambrano, Hron, Pio, Simeon, Suharoschi, Moreno-Indias, Temko, Nedyalkova, Apostol, Truică, Shigdel, Telalović, Bongcam-Rudloff, Przymus, Jordamović, Falquet, Tarazona, Sampri, Isola, Pérez-Serrano, Trajkovik, Klucar, Loncar-Turukalo, Havulinna, Jansen, Bertelsen and Claesson.The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish “gold standard” protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory ‘omics’ features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices.CMA - Centro de Matemática e AplicaçõesUNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e IndustrialDEMI - Departamento de Engenharia Mecânica e IndustrialRUND’Elia, DomenicaTruu, JaakLahti, LeoBerland, MagaliPapoutsoglou, GeorgiosCeci, MichelangeloZomer, AldertLopes, Marta B.Ibrahimi, ElianaGruca, AleksandraNechyporenko, AlinaFrohme, MarcusKlammsteiner, ThomasPau, Enrique Carrillo de SantaMarcos-Zambrano, Laura JudithHron, KarelPio, GianvitoSimeon, AndreaSuharoschi, RamonaMoreno-Indias, IsabelTemko, AndriyNedyalkova, MiroslavaApostol, Elena SimonaTruică, Ciprian OctavianShigdel, RajeshTelalović, Jasminka HasićBongcam-Rudloff, ErikPrzymus, PiotrJordamović, Naida BabićFalquet, LaurentTarazona, SoniaSampri, AlexiaIsola, GaetanoPérez-Serrano, DavidTrajkovik, VladimirKlucar, LubosLoncar-Turukalo, TatjanaHavulinna, Aki S.Jansen, ChristianBertelsen, Randi J.Claesson, Marcus Joakim2024-03-13T23:56:11Z2023-092023-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article8application/pdfhttp://hdl.handle.net/10362/164896eng1664-302XPURE: 84354777https://doi.org/10.3389/fmicb.2023.1257002info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:47:13Zoai:run.unl.pt:10362/164896Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:02:03.817111Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Advancing microbiome research with machine learning
key findings from the ML4Microbiome COST action
title Advancing microbiome research with machine learning
spellingShingle Advancing microbiome research with machine learning
D’Elia, Domenica
artificial intelligence
best practices
machine learning
microbiome
standards
Microbiology
Microbiology (medical)
SDG 3 - Good Health and Well-being
title_short Advancing microbiome research with machine learning
title_full Advancing microbiome research with machine learning
title_fullStr Advancing microbiome research with machine learning
title_full_unstemmed Advancing microbiome research with machine learning
title_sort Advancing microbiome research with machine learning
author D’Elia, Domenica
author_facet D’Elia, Domenica
Truu, Jaak
Lahti, Leo
Berland, Magali
Papoutsoglou, Georgios
Ceci, Michelangelo
Zomer, Aldert
Lopes, Marta B.
Ibrahimi, Eliana
Gruca, Aleksandra
Nechyporenko, Alina
Frohme, Marcus
Klammsteiner, Thomas
Pau, Enrique Carrillo de Santa
Marcos-Zambrano, Laura Judith
Hron, Karel
Pio, Gianvito
Simeon, Andrea
Suharoschi, Ramona
Moreno-Indias, Isabel
Temko, Andriy
Nedyalkova, Miroslava
Apostol, Elena Simona
Truică, Ciprian Octavian
Shigdel, Rajesh
Telalović, Jasminka Hasić
Bongcam-Rudloff, Erik
Przymus, Piotr
Jordamović, Naida Babić
Falquet, Laurent
Tarazona, Sonia
Sampri, Alexia
Isola, Gaetano
Pérez-Serrano, David
Trajkovik, Vladimir
Klucar, Lubos
Loncar-Turukalo, Tatjana
Havulinna, Aki S.
Jansen, Christian
Bertelsen, Randi J.
Claesson, Marcus Joakim
author_role author
author2 Truu, Jaak
Lahti, Leo
Berland, Magali
Papoutsoglou, Georgios
Ceci, Michelangelo
Zomer, Aldert
Lopes, Marta B.
Ibrahimi, Eliana
Gruca, Aleksandra
Nechyporenko, Alina
Frohme, Marcus
Klammsteiner, Thomas
Pau, Enrique Carrillo de Santa
Marcos-Zambrano, Laura Judith
Hron, Karel
Pio, Gianvito
Simeon, Andrea
Suharoschi, Ramona
Moreno-Indias, Isabel
Temko, Andriy
Nedyalkova, Miroslava
Apostol, Elena Simona
Truică, Ciprian Octavian
Shigdel, Rajesh
Telalović, Jasminka Hasić
Bongcam-Rudloff, Erik
Przymus, Piotr
Jordamović, Naida Babić
Falquet, Laurent
Tarazona, Sonia
Sampri, Alexia
Isola, Gaetano
Pérez-Serrano, David
Trajkovik, Vladimir
Klucar, Lubos
Loncar-Turukalo, Tatjana
Havulinna, Aki S.
Jansen, Christian
Bertelsen, Randi J.
Claesson, Marcus Joakim
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv CMA - Centro de Matemática e Aplicações
UNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e Industrial
DEMI - Departamento de Engenharia Mecânica e Industrial
RUN
dc.contributor.author.fl_str_mv D’Elia, Domenica
Truu, Jaak
Lahti, Leo
Berland, Magali
Papoutsoglou, Georgios
Ceci, Michelangelo
Zomer, Aldert
Lopes, Marta B.
Ibrahimi, Eliana
Gruca, Aleksandra
Nechyporenko, Alina
Frohme, Marcus
Klammsteiner, Thomas
Pau, Enrique Carrillo de Santa
Marcos-Zambrano, Laura Judith
Hron, Karel
Pio, Gianvito
Simeon, Andrea
Suharoschi, Ramona
Moreno-Indias, Isabel
Temko, Andriy
Nedyalkova, Miroslava
Apostol, Elena Simona
Truică, Ciprian Octavian
Shigdel, Rajesh
Telalović, Jasminka Hasić
Bongcam-Rudloff, Erik
Przymus, Piotr
Jordamović, Naida Babić
Falquet, Laurent
Tarazona, Sonia
Sampri, Alexia
Isola, Gaetano
Pérez-Serrano, David
Trajkovik, Vladimir
Klucar, Lubos
Loncar-Turukalo, Tatjana
Havulinna, Aki S.
Jansen, Christian
Bertelsen, Randi J.
Claesson, Marcus Joakim
dc.subject.por.fl_str_mv artificial intelligence
best practices
machine learning
microbiome
standards
Microbiology
Microbiology (medical)
SDG 3 - Good Health and Well-being
topic artificial intelligence
best practices
machine learning
microbiome
standards
Microbiology
Microbiology (medical)
SDG 3 - Good Health and Well-being
description Funding Information: The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study is based upon work from COST Action ML4Microbiome “Statistical and machine learning techniques in human microbiome studies” (CA18131), supported by COST (European Cooperation in Science and Technology), www.cost.eu . MB acknowledges support through the Metagenopolis grant ANR-11-DPBS-0001. IM-I acknowledges support by the “Miguel Servet Type II” program (CPII21/00013) of the ISCIII-Madrid (Spain), co-financed by the FEDER. Publisher Copyright: Copyright © 2023 D’Elia, Truu, Lahti, Berland, Papoutsoglou, Ceci, Zomer, Lopes, Ibrahimi, Gruca, Nechyporenko, Frohme, Klammsteiner, Pau, Marcos-Zambrano, Hron, Pio, Simeon, Suharoschi, Moreno-Indias, Temko, Nedyalkova, Apostol, Truică, Shigdel, Telalović, Bongcam-Rudloff, Przymus, Jordamović, Falquet, Tarazona, Sampri, Isola, Pérez-Serrano, Trajkovik, Klucar, Loncar-Turukalo, Havulinna, Jansen, Bertelsen and Claesson.
publishDate 2023
dc.date.none.fl_str_mv 2023-09
2023-09-01T00:00:00Z
2024-03-13T23:56:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/164896
url http://hdl.handle.net/10362/164896
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1664-302X
PURE: 84354777
https://doi.org/10.3389/fmicb.2023.1257002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 8
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138193290821632