Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39851 |
Resumo: | The purpose of this corrigendum is to replace lemma 6 on page 13 of the paper to guarantee the accuracy of other results derived from it, in particular, the discussion after remark 4 on page 15. In the original version, the result we prove does not allow us to conclude, as we claim, that the set of constants of the motion we identify can be used with the Lie–Cartan theorem. The formulation of the lemma is misleading. Besides, we need the additional hypothesis that G is semisimple to be able to prove the correct statement. Therefore, both the statement and the proof should be replaced by the following. |
id |
RCAP_bc6581f7456eacb1c39a9f789501373c |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39851 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian systemThe purpose of this corrigendum is to replace lemma 6 on page 13 of the paper to guarantee the accuracy of other results derived from it, in particular, the discussion after remark 4 on page 15. In the original version, the result we prove does not allow us to conclude, as we claim, that the set of constants of the motion we identify can be used with the Lie–Cartan theorem. The formulation of the lemma is misleading. Besides, we need the additional hypothesis that G is semisimple to be able to prove the correct statement. Therefore, both the statement and the proof should be replaced by the following.IOP Publishing2023-12-19T15:13:15Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39851eng1751-811310.1088/1751-8113/46/18/189501Abrunheiro, LCamarinha, MClemente-Gallardo, Jinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:17:32Zoai:ria.ua.pt:10773/39851Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:48.028300Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system |
title |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system |
spellingShingle |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system Abrunheiro, L |
title_short |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system |
title_full |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system |
title_fullStr |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system |
title_full_unstemmed |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system |
title_sort |
Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system |
author |
Abrunheiro, L |
author_facet |
Abrunheiro, L Camarinha, M Clemente-Gallardo, J |
author_role |
author |
author2 |
Camarinha, M Clemente-Gallardo, J |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Abrunheiro, L Camarinha, M Clemente-Gallardo, J |
description |
The purpose of this corrigendum is to replace lemma 6 on page 13 of the paper to guarantee the accuracy of other results derived from it, in particular, the discussion after remark 4 on page 15. In the original version, the result we prove does not allow us to conclude, as we claim, that the set of constants of the motion we identify can be used with the Lie–Cartan theorem. The formulation of the lemma is misleading. Besides, we need the additional hypothesis that G is semisimple to be able to prove the correct statement. Therefore, both the statement and the proof should be replaced by the following. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2023-12-19T15:13:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39851 |
url |
http://hdl.handle.net/10773/39851 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1751-8113 10.1088/1751-8113/46/18/189501 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137748774289408 |