Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system

Detalhes bibliográficos
Autor(a) principal: Abrunheiro, L
Data de Publicação: 2013
Outros Autores: Camarinha, M, Clemente-Gallardo, J
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/39851
Resumo: The purpose of this corrigendum is to replace lemma 6 on page 13 of the paper to guarantee the accuracy of other results derived from it, in particular, the discussion after remark 4 on page 15. In the original version, the result we prove does not allow us to conclude, as we claim, that the set of constants of the motion we identify can be used with the Lie–Cartan theorem. The formulation of the lemma is misleading. Besides, we need the additional hypothesis that G is semisimple to be able to prove the correct statement. Therefore, both the statement and the proof should be replaced by the following.
id RCAP_bc6581f7456eacb1c39a9f789501373c
oai_identifier_str oai:ria.ua.pt:10773/39851
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian systemThe purpose of this corrigendum is to replace lemma 6 on page 13 of the paper to guarantee the accuracy of other results derived from it, in particular, the discussion after remark 4 on page 15. In the original version, the result we prove does not allow us to conclude, as we claim, that the set of constants of the motion we identify can be used with the Lie–Cartan theorem. The formulation of the lemma is misleading. Besides, we need the additional hypothesis that G is semisimple to be able to prove the correct statement. Therefore, both the statement and the proof should be replaced by the following.IOP Publishing2023-12-19T15:13:15Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39851eng1751-811310.1088/1751-8113/46/18/189501Abrunheiro, LCamarinha, MClemente-Gallardo, Jinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:17:32Zoai:ria.ua.pt:10773/39851Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:48.028300Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
title Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
spellingShingle Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
Abrunheiro, L
title_short Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
title_full Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
title_fullStr Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
title_full_unstemmed Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
title_sort Corrigendum: cubic polynomials on Lie groups: reduction of the Hamiltonian system
author Abrunheiro, L
author_facet Abrunheiro, L
Camarinha, M
Clemente-Gallardo, J
author_role author
author2 Camarinha, M
Clemente-Gallardo, J
author2_role author
author
dc.contributor.author.fl_str_mv Abrunheiro, L
Camarinha, M
Clemente-Gallardo, J
description The purpose of this corrigendum is to replace lemma 6 on page 13 of the paper to guarantee the accuracy of other results derived from it, in particular, the discussion after remark 4 on page 15. In the original version, the result we prove does not allow us to conclude, as we claim, that the set of constants of the motion we identify can be used with the Lie–Cartan theorem. The formulation of the lemma is misleading. Besides, we need the additional hypothesis that G is semisimple to be able to prove the correct statement. Therefore, both the statement and the proof should be replaced by the following.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2023-12-19T15:13:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/39851
url http://hdl.handle.net/10773/39851
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1751-8113
10.1088/1751-8113/46/18/189501
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137748774289408