Influence map-based pathfinding algorithms in video games

Detalhes bibliográficos
Autor(a) principal: Adaixo, Michael Carlos Gonçalves
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/5517
Resumo: Path search algorithms, i.e., pathfinding algorithms, are used to solve shortest path problems by intelligent agents, ranging from computer games and applications to robotics. Pathfinding is a particular kind of search, in which the objective is to find a path between two nodes. A node is a point in space where an intelligent agent can travel. Moving agents in physical or virtual worlds is a key part of the simulation of intelligent behavior. If a game agent is not able to navigate through its surrounding environment without avoiding obstacles, it does not seem intelligent. Hence the reason why pathfinding is among the core tasks of AI in computer games. Pathfinding algorithms work well with single agents navigating through an environment. In realtime strategy (RTS) games, potential fields (PF) are used for multi-agent navigation in large and dynamic game environments. On the contrary, influence maps are not used in pathfinding. Influence maps are a spatial reasoning technique that helps bots and players to take decisions about the course of the game. Influence map represent game information, e.g., events and faction power distribution, and is ultimately used to provide game agents knowledge to take strategic or tactical decisions. Strategic decisions are based on achieving an overall goal, e.g., capture an enemy location and win the game. Tactical decisions are based on small and precise actions, e.g., where to install a turret, where to hide from the enemy. This dissertation work focuses on a novel path search method, that combines the state-of-theart pathfinding algorithms with influence maps in order to achieve better time performance and less memory space performance as well as more smooth paths in pathfinding.
id RCAP_ca0463bb398837b0febb237b3145d365
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/5517
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Influence map-based pathfinding algorithms in video gamesInfluence MapsInteligencia ArtificalPathfindingSpatial ReasoningDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaPath search algorithms, i.e., pathfinding algorithms, are used to solve shortest path problems by intelligent agents, ranging from computer games and applications to robotics. Pathfinding is a particular kind of search, in which the objective is to find a path between two nodes. A node is a point in space where an intelligent agent can travel. Moving agents in physical or virtual worlds is a key part of the simulation of intelligent behavior. If a game agent is not able to navigate through its surrounding environment without avoiding obstacles, it does not seem intelligent. Hence the reason why pathfinding is among the core tasks of AI in computer games. Pathfinding algorithms work well with single agents navigating through an environment. In realtime strategy (RTS) games, potential fields (PF) are used for multi-agent navigation in large and dynamic game environments. On the contrary, influence maps are not used in pathfinding. Influence maps are a spatial reasoning technique that helps bots and players to take decisions about the course of the game. Influence map represent game information, e.g., events and faction power distribution, and is ultimately used to provide game agents knowledge to take strategic or tactical decisions. Strategic decisions are based on achieving an overall goal, e.g., capture an enemy location and win the game. Tactical decisions are based on small and precise actions, e.g., where to install a turret, where to hide from the enemy. This dissertation work focuses on a novel path search method, that combines the state-of-theart pathfinding algorithms with influence maps in order to achieve better time performance and less memory space performance as well as more smooth paths in pathfinding.Algoritmos de pathfinding são usados por agentes inteligentes para resolver o problema do caminho mais curto, desde a àrea jogos de computador até à robótica. Pathfinding é um tipo particular de algoritmos de pesquisa, em que o objectivo é encontrar o caminho mais curto entre dois nós. Um nó é um ponto no espaço onde um agente inteligente consegue navegar. Agentes móveis em mundos físicos e virtuais são uma componente chave para a simulação de comportamento inteligente. Se um agente não for capaz de navegar no ambiente que o rodeia sem colidir com obstáculos, não aparenta ser inteligente. Consequentemente, pathfinding faz parte das tarefas fundamentais de inteligencia artificial em vídeo jogos. Algoritmos de pathfinding funcionam bem com agentes únicos a navegar por um ambiente. Em jogos de estratégia em tempo real (RTS), potential fields (PF) são utilizados para a navegação multi-agente em ambientes amplos e dinâmicos. Pelo contrário, os influence maps não são usados no pathfinding. Influence maps são uma técnica de raciocínio espacial que ajudam agentes inteligentes e jogadores a tomar decisões sobre o decorrer do jogo. Influence maps representam informação de jogo, por exemplo, eventos e distribuição de poder, que são usados para fornecer conhecimento aos agentes na tomada de decisões estratégicas ou táticas. As decisões estratégicas são baseadas em atingir uma meta global, por exemplo, a captura de uma zona do inimigo e ganhar o jogo. Decisões táticas são baseadas em acções pequenas e precisas, por exemplo, em que local instalar uma torre de defesa, ou onde se esconder do inimigo. Esta dissertação foca-se numa nova técnica que consiste em combinar algoritmos de pathfinding com influence maps, afim de alcançar melhores performances a nível de tempo de pesquisa e consumo de memória, assim como obter caminhos visualmente mais suaves.Gomes, Abel João PadrãouBibliorumAdaixo, Michael Carlos Gonçalves2018-07-30T16:05:30Z2014-6-202014-07-252014-07-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/5517TID:201637820enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:43:31Zoai:ubibliorum.ubi.pt:10400.6/5517Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:46:24.794998Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Influence map-based pathfinding algorithms in video games
title Influence map-based pathfinding algorithms in video games
spellingShingle Influence map-based pathfinding algorithms in video games
Adaixo, Michael Carlos Gonçalves
Influence Maps
Inteligencia Artifical
Pathfinding
Spatial Reasoning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Influence map-based pathfinding algorithms in video games
title_full Influence map-based pathfinding algorithms in video games
title_fullStr Influence map-based pathfinding algorithms in video games
title_full_unstemmed Influence map-based pathfinding algorithms in video games
title_sort Influence map-based pathfinding algorithms in video games
author Adaixo, Michael Carlos Gonçalves
author_facet Adaixo, Michael Carlos Gonçalves
author_role author
dc.contributor.none.fl_str_mv Gomes, Abel João Padrão
uBibliorum
dc.contributor.author.fl_str_mv Adaixo, Michael Carlos Gonçalves
dc.subject.por.fl_str_mv Influence Maps
Inteligencia Artifical
Pathfinding
Spatial Reasoning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Influence Maps
Inteligencia Artifical
Pathfinding
Spatial Reasoning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Path search algorithms, i.e., pathfinding algorithms, are used to solve shortest path problems by intelligent agents, ranging from computer games and applications to robotics. Pathfinding is a particular kind of search, in which the objective is to find a path between two nodes. A node is a point in space where an intelligent agent can travel. Moving agents in physical or virtual worlds is a key part of the simulation of intelligent behavior. If a game agent is not able to navigate through its surrounding environment without avoiding obstacles, it does not seem intelligent. Hence the reason why pathfinding is among the core tasks of AI in computer games. Pathfinding algorithms work well with single agents navigating through an environment. In realtime strategy (RTS) games, potential fields (PF) are used for multi-agent navigation in large and dynamic game environments. On the contrary, influence maps are not used in pathfinding. Influence maps are a spatial reasoning technique that helps bots and players to take decisions about the course of the game. Influence map represent game information, e.g., events and faction power distribution, and is ultimately used to provide game agents knowledge to take strategic or tactical decisions. Strategic decisions are based on achieving an overall goal, e.g., capture an enemy location and win the game. Tactical decisions are based on small and precise actions, e.g., where to install a turret, where to hide from the enemy. This dissertation work focuses on a novel path search method, that combines the state-of-theart pathfinding algorithms with influence maps in order to achieve better time performance and less memory space performance as well as more smooth paths in pathfinding.
publishDate 2014
dc.date.none.fl_str_mv 2014-6-20
2014-07-25
2014-07-25T00:00:00Z
2018-07-30T16:05:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/5517
TID:201637820
url http://hdl.handle.net/10400.6/5517
identifier_str_mv TID:201637820
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136360552988672