Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces

Detalhes bibliográficos
Autor(a) principal: Caldeira, Cristina
Data de Publicação: 2007
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4601
https://doi.org/10.1016/j.laa.2007.02.021
Resumo: Let V be a finite dimension vector space. For a linear operator on V, f, D(f) denotes the restriction of the derivation associated with f to the mth Grassmann space of V. In [Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140-146] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f), over an arbitrary field. Over a field of zero characteristic that lower bound is given bydeg(PD(f))[greater-or-equal, slanted]m(deg(Pf)-m)+1.Using additive number theory results, results on the elementary divisors of D(f) and methods presented by Marcus and Ali in [Minimal polynomials of additive commutators and jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues of f.
id RCAP_cabeaf6e1f29da584a4a7504af080b09
oai_identifier_str oai:estudogeral.uc.pt:10316/4601
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spacesGrassmann spaceDerivationMinimal polynomialLet V be a finite dimension vector space. For a linear operator on V, f, D(f) denotes the restriction of the derivation associated with f to the mth Grassmann space of V. In [Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140-146] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f), over an arbitrary field. Over a field of zero characteristic that lower bound is given bydeg(PD(f))[greater-or-equal, slanted]m(deg(Pf)-m)+1.Using additive number theory results, results on the elementary divisors of D(f) and methods presented by Marcus and Ali in [Minimal polynomials of additive commutators and jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues of f.http://www.sciencedirect.com/science/article/B6V0R-4N4J352-3/1/1ed47bbdae767944ea37612f8490fe7e2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4601http://hdl.handle.net/10316/4601https://doi.org/10.1016/j.laa.2007.02.021engLinear Algebra and its Applications. 424:2-3 (2007) 492-509Caldeira, Cristinainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:49:13Zoai:estudogeral.uc.pt:10316/4601Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:41.338807Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
title Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
spellingShingle Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
Caldeira, Cristina
Grassmann space
Derivation
Minimal polynomial
title_short Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
title_full Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
title_fullStr Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
title_full_unstemmed Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
title_sort Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
author Caldeira, Cristina
author_facet Caldeira, Cristina
author_role author
dc.contributor.author.fl_str_mv Caldeira, Cristina
dc.subject.por.fl_str_mv Grassmann space
Derivation
Minimal polynomial
topic Grassmann space
Derivation
Minimal polynomial
description Let V be a finite dimension vector space. For a linear operator on V, f, D(f) denotes the restriction of the derivation associated with f to the mth Grassmann space of V. In [Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140-146] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f), over an arbitrary field. Over a field of zero characteristic that lower bound is given bydeg(PD(f))[greater-or-equal, slanted]m(deg(Pf)-m)+1.Using additive number theory results, results on the elementary divisors of D(f) and methods presented by Marcus and Ali in [Minimal polynomials of additive commutators and jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues of f.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4601
http://hdl.handle.net/10316/4601
https://doi.org/10.1016/j.laa.2007.02.021
url http://hdl.handle.net/10316/4601
https://doi.org/10.1016/j.laa.2007.02.021
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Linear Algebra and its Applications. 424:2-3 (2007) 492-509
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897129197568