Dynamic programming for aligning sketch maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/94404 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
id |
RCAP_dab5c46a2f4bc944cf7e59828dcfa7b0 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/94404 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamic programming for aligning sketch mapsSketch mapMetric mapDynamic programmingTabu searchLearning algorithmLink analysisAlignmentDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesSketch maps play an important role in communicating spatial knowledge, particularly in applications interested in identifying correspondences to metric maps for land tenure in rural communities. The interpretation of a sketch map is linked to the users’ spatial reasoning and the number of features included. Additionally, in order to make use of the information provided by sketch maps, the integration with information systems is needed but is convoluted. The process of identifying which element in the base map is being represented in the sketch map involves the use of correct descriptors and structures to manage them. In the past years, different methods to give a solution to the sketch matching problem employs iterative methods using static scores to create a subset of correspondences. In this thesis, we propose an implementation for the automatic aligning of the sketch to metric maps, based on dynamic programming techniques from reinforcement learning. Our solution is distinctive from other approaches as it searches for pair equivalences by exploring the environment of the search space and learning from positive rewards derived from a custom scoring system. Scores are used to evaluate the likeliness of a candidate pair to belong to the final solution, and the results are back up in a state-value function to recover the best subset states and recovering the highest scored combinations. Reinforcement learning algorithms are dynamic and robust solutions for finding the best solution in an ample search space. The proposed workflow improves the outcoming spatial configuration for the aligned features compared to previous approaches, specifically the Tabu Search.Schwering, AngelaChipofya, Malumbo ChakaPainho, Marco Octávio TrindadeRUNLeón, Violeta Ana Luz Sosa2020-03-17T16:04:19Z2020-01-312020-01-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/94404TID:202459810enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:42:23Zoai:run.unl.pt:10362/94404Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:37:56.996226Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamic programming for aligning sketch maps |
title |
Dynamic programming for aligning sketch maps |
spellingShingle |
Dynamic programming for aligning sketch maps León, Violeta Ana Luz Sosa Sketch map Metric map Dynamic programming Tabu search Learning algorithm Link analysis Alignment |
title_short |
Dynamic programming for aligning sketch maps |
title_full |
Dynamic programming for aligning sketch maps |
title_fullStr |
Dynamic programming for aligning sketch maps |
title_full_unstemmed |
Dynamic programming for aligning sketch maps |
title_sort |
Dynamic programming for aligning sketch maps |
author |
León, Violeta Ana Luz Sosa |
author_facet |
León, Violeta Ana Luz Sosa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Schwering, Angela Chipofya, Malumbo Chaka Painho, Marco Octávio Trindade RUN |
dc.contributor.author.fl_str_mv |
León, Violeta Ana Luz Sosa |
dc.subject.por.fl_str_mv |
Sketch map Metric map Dynamic programming Tabu search Learning algorithm Link analysis Alignment |
topic |
Sketch map Metric map Dynamic programming Tabu search Learning algorithm Link analysis Alignment |
description |
Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-17T16:04:19Z 2020-01-31 2020-01-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/94404 TID:202459810 |
url |
http://hdl.handle.net/10362/94404 |
identifier_str_mv |
TID:202459810 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137995857592320 |