Neuroevolution for solving multiobjective knapsack problems

Detalhes bibliográficos
Autor(a) principal: Denysiuk, Roman
Data de Publicação: 2019
Outros Autores: Gaspar-Cunha, A., Delbem, Alexandre C. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/68685
Resumo: The multiobjective knapsack problem (MOKP) is an important combinatorial problem that arises in various applications, including resource allocation, computer science and finance. When tackling this problem by evolutionary multiobjective optimization algorithms (EMOAs), it has been demonstrated that traditional recombination operators acting on binary solution representations are susceptible to a loss of diversity and poor scalability. To address those issues, we propose to use artificial neural networks for generating solutions by performing a binary classification of items using the information about their profits and weights. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The main contribution of this study resides in developing a solution encoding and genotype-phenotype mapping for EMOAs to solve MOKPs. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional variation operators based on binary crossovers. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs.
id RCAP_dd8078429dbe9ceb447010e4e1d8cf27
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/68685
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Neuroevolution for solving multiobjective knapsack problemsEvolutionary computationMultiobjective knapsack problemNeuroevolutionCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyThe multiobjective knapsack problem (MOKP) is an important combinatorial problem that arises in various applications, including resource allocation, computer science and finance. When tackling this problem by evolutionary multiobjective optimization algorithms (EMOAs), it has been demonstrated that traditional recombination operators acting on binary solution representations are susceptible to a loss of diversity and poor scalability. To address those issues, we propose to use artificial neural networks for generating solutions by performing a binary classification of items using the information about their profits and weights. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The main contribution of this study resides in developing a solution encoding and genotype-phenotype mapping for EMOAs to solve MOKPs. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional variation operators based on binary crossovers. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs.Portuguese “Fundação para a Ciência e Tecnologia” under grant PEst-C/CTM/LA0025/2013 (Projecto Estratégico - LA 25 - 2013-2014 - Strategic Project - LA 25 - 2013-2014)ElsevierUniversidade do MinhoDenysiuk, RomanGaspar-Cunha, A.Delbem, Alexandre C. B.2019-022019-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/68685engDenysiuk, R., Gaspar-Cunha, A., & Delbem, A. C. (2019). Neuroevolution for solving multiobjective knapsack problems. Expert Systems with Applications, 116, 65-770957-417410.1016/j.eswa.2018.09.004https://www.sciencedirect.com/science/article/pii/S095741741830575Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:49:01Zoai:repositorium.sdum.uminho.pt:1822/68685Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:49:01Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Neuroevolution for solving multiobjective knapsack problems
title Neuroevolution for solving multiobjective knapsack problems
spellingShingle Neuroevolution for solving multiobjective knapsack problems
Denysiuk, Roman
Evolutionary computation
Multiobjective knapsack problem
Neuroevolution
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
title_short Neuroevolution for solving multiobjective knapsack problems
title_full Neuroevolution for solving multiobjective knapsack problems
title_fullStr Neuroevolution for solving multiobjective knapsack problems
title_full_unstemmed Neuroevolution for solving multiobjective knapsack problems
title_sort Neuroevolution for solving multiobjective knapsack problems
author Denysiuk, Roman
author_facet Denysiuk, Roman
Gaspar-Cunha, A.
Delbem, Alexandre C. B.
author_role author
author2 Gaspar-Cunha, A.
Delbem, Alexandre C. B.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Denysiuk, Roman
Gaspar-Cunha, A.
Delbem, Alexandre C. B.
dc.subject.por.fl_str_mv Evolutionary computation
Multiobjective knapsack problem
Neuroevolution
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
topic Evolutionary computation
Multiobjective knapsack problem
Neuroevolution
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
description The multiobjective knapsack problem (MOKP) is an important combinatorial problem that arises in various applications, including resource allocation, computer science and finance. When tackling this problem by evolutionary multiobjective optimization algorithms (EMOAs), it has been demonstrated that traditional recombination operators acting on binary solution representations are susceptible to a loss of diversity and poor scalability. To address those issues, we propose to use artificial neural networks for generating solutions by performing a binary classification of items using the information about their profits and weights. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The main contribution of this study resides in developing a solution encoding and genotype-phenotype mapping for EMOAs to solve MOKPs. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional variation operators based on binary crossovers. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
2019-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/68685
url http://hdl.handle.net/1822/68685
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Denysiuk, R., Gaspar-Cunha, A., & Delbem, A. C. (2019). Neuroevolution for solving multiobjective knapsack problems. Expert Systems with Applications, 116, 65-77
0957-4174
10.1016/j.eswa.2018.09.004
https://www.sciencedirect.com/science/article/pii/S095741741830575X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544750775926784