Modelling changes in the unconditional variance of long stock return series

Detalhes bibliográficos
Autor(a) principal: Amado, Cristina
Data de Publicação: 2012
Outros Autores: Teräsvirta, Timo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/17764
Resumo: In this paper we develop a testing and modelling procedure for describing the long-term volatility movements over very long return series. For the purpose, we assume that volatility is multiplicatively decomposed into a conditional and an unconditional component as in Amado and Ter¨asvirta (2011). The latter component is modelled by incorporating smooth changes so that the unconditional variance is allowed to evolve slowly over time. Statistical inference is used for specifying the parameterization of the time-varying component by applying a sequence of Lagrange multiplier tests. The model building procedure is illustrated with an application to daily returns of the Dow Jones Industrial Average stock index covering a period of more than ninety years. The main conclusions are as follows. First, the LM tests strongly reject the assumption of constancy of the unconditional variance. Second, the results show that the long-memory property in volatility may be explained by ignored changes in the unconditional variance of the long series. Finally, based on a formal statistical test we find evidence of the superiority of volatility forecast accuracy of the new model over the GJR-GARCH model at all horizons for a subset of the long return series.
id RCAP_ddcb017683d1b5fca9562190e1057fde
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/17764
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modelling changes in the unconditional variance of long stock return seriesModel specificationTimevarying unconditional varianceConditional heteroskedasticityLagrange multiplier testLong financial time seriesVolatility persistenceIn this paper we develop a testing and modelling procedure for describing the long-term volatility movements over very long return series. For the purpose, we assume that volatility is multiplicatively decomposed into a conditional and an unconditional component as in Amado and Ter¨asvirta (2011). The latter component is modelled by incorporating smooth changes so that the unconditional variance is allowed to evolve slowly over time. Statistical inference is used for specifying the parameterization of the time-varying component by applying a sequence of Lagrange multiplier tests. The model building procedure is illustrated with an application to daily returns of the Dow Jones Industrial Average stock index covering a period of more than ninety years. The main conclusions are as follows. First, the LM tests strongly reject the assumption of constancy of the unconditional variance. Second, the results show that the long-memory property in volatility may be explained by ignored changes in the unconditional variance of the long series. Finally, based on a formal statistical test we find evidence of the superiority of volatility forecast accuracy of the new model over the GJR-GARCH model at all horizons for a subset of the long return series.COMPETE; QREN; FEDER; Fundação para a Ciência e a Tecnologia (FCT)COMPETEQRENFEDERUniversidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)Universidade do MinhoAmado, CristinaTeräsvirta, Timo2012-022012-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/17764enghttp://www3.eeg.uminho.pt/economia/nipe/docs/2012/NIPE_WP_2_2012.pdfinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:45:26Zoai:repositorium.sdum.uminho.pt:1822/17764Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:43:16.876054Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modelling changes in the unconditional variance of long stock return series
title Modelling changes in the unconditional variance of long stock return series
spellingShingle Modelling changes in the unconditional variance of long stock return series
Amado, Cristina
Model specification
Timevarying unconditional variance
Conditional heteroskedasticity
Lagrange multiplier test
Long financial time series
Volatility persistence
title_short Modelling changes in the unconditional variance of long stock return series
title_full Modelling changes in the unconditional variance of long stock return series
title_fullStr Modelling changes in the unconditional variance of long stock return series
title_full_unstemmed Modelling changes in the unconditional variance of long stock return series
title_sort Modelling changes in the unconditional variance of long stock return series
author Amado, Cristina
author_facet Amado, Cristina
Teräsvirta, Timo
author_role author
author2 Teräsvirta, Timo
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Amado, Cristina
Teräsvirta, Timo
dc.subject.por.fl_str_mv Model specification
Timevarying unconditional variance
Conditional heteroskedasticity
Lagrange multiplier test
Long financial time series
Volatility persistence
topic Model specification
Timevarying unconditional variance
Conditional heteroskedasticity
Lagrange multiplier test
Long financial time series
Volatility persistence
description In this paper we develop a testing and modelling procedure for describing the long-term volatility movements over very long return series. For the purpose, we assume that volatility is multiplicatively decomposed into a conditional and an unconditional component as in Amado and Ter¨asvirta (2011). The latter component is modelled by incorporating smooth changes so that the unconditional variance is allowed to evolve slowly over time. Statistical inference is used for specifying the parameterization of the time-varying component by applying a sequence of Lagrange multiplier tests. The model building procedure is illustrated with an application to daily returns of the Dow Jones Industrial Average stock index covering a period of more than ninety years. The main conclusions are as follows. First, the LM tests strongly reject the assumption of constancy of the unconditional variance. Second, the results show that the long-memory property in volatility may be explained by ignored changes in the unconditional variance of the long series. Finally, based on a formal statistical test we find evidence of the superiority of volatility forecast accuracy of the new model over the GJR-GARCH model at all horizons for a subset of the long return series.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
2012-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/17764
url http://hdl.handle.net/1822/17764
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www3.eeg.uminho.pt/economia/nipe/docs/2012/NIPE_WP_2_2012.pdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)
publisher.none.fl_str_mv Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132988801286144