Modelling causality in nonstationary variances with an application to carbon markets

Detalhes bibliográficos
Autor(a) principal: Martins, Susana
Data de Publicação: 2023
Outros Autores: Amado, Cristina
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/87581
Resumo: In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility spillover effects across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks persists which is supported by the presence of variance interactions robust to nonstationarity.
id RCAP_fd705dd8bf476827289f8b29d35acf8c
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/87581
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modelling causality in nonstationary variances with an application to carbon marketsVariance interactionsNonstationarityShort- and long-term volatilityLagrange multiplier testIn this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility spillover effects across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks persists which is supported by the presence of variance interactions robust to nonstationarity.Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)Universidade do MinhoMartins, SusanaAmado, Cristina20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/87581enghttps://nipe.eeg.uminho.pt/publicacoes-nipe/#documentos-de-trabalhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-23T01:40:03Zoai:repositorium.sdum.uminho.pt:1822/87581Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:55:37.913584Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modelling causality in nonstationary variances with an application to carbon markets
title Modelling causality in nonstationary variances with an application to carbon markets
spellingShingle Modelling causality in nonstationary variances with an application to carbon markets
Martins, Susana
Variance interactions
Nonstationarity
Short- and long-term volatility
Lagrange multiplier test
title_short Modelling causality in nonstationary variances with an application to carbon markets
title_full Modelling causality in nonstationary variances with an application to carbon markets
title_fullStr Modelling causality in nonstationary variances with an application to carbon markets
title_full_unstemmed Modelling causality in nonstationary variances with an application to carbon markets
title_sort Modelling causality in nonstationary variances with an application to carbon markets
author Martins, Susana
author_facet Martins, Susana
Amado, Cristina
author_role author
author2 Amado, Cristina
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Martins, Susana
Amado, Cristina
dc.subject.por.fl_str_mv Variance interactions
Nonstationarity
Short- and long-term volatility
Lagrange multiplier test
topic Variance interactions
Nonstationarity
Short- and long-term volatility
Lagrange multiplier test
description In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility spillover effects across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks persists which is supported by the presence of variance interactions robust to nonstationarity.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/87581
url https://hdl.handle.net/1822/87581
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://nipe.eeg.uminho.pt/publicacoes-nipe/#documentos-de-trabalho
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)
publisher.none.fl_str_mv Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136442790707200