Optimal control of affine connection control systems from the point of view of Lie algebroids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15731 |
Resumo: | The purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field. |
id |
RCAP_e65b482a09684f21f1d1cbc064ce48cf |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15731 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimal control of affine connection control systems from the point of view of Lie algebroidsAffine connection control systemsLie algebroidsLie groupsOptimal control problemsThe purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field.World Scientific Publishing Company2016-06-15T11:43:57Z2014-10-01T00:00:00Z2014-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15731eng0219-887810.1142/S0219887814500388Abrunheiro, L.Camarinha, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:54Zoai:ria.ua.pt:10773/15731Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:56.491687Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimal control of affine connection control systems from the point of view of Lie algebroids |
title |
Optimal control of affine connection control systems from the point of view of Lie algebroids |
spellingShingle |
Optimal control of affine connection control systems from the point of view of Lie algebroids Abrunheiro, L. Affine connection control systems Lie algebroids Lie groups Optimal control problems |
title_short |
Optimal control of affine connection control systems from the point of view of Lie algebroids |
title_full |
Optimal control of affine connection control systems from the point of view of Lie algebroids |
title_fullStr |
Optimal control of affine connection control systems from the point of view of Lie algebroids |
title_full_unstemmed |
Optimal control of affine connection control systems from the point of view of Lie algebroids |
title_sort |
Optimal control of affine connection control systems from the point of view of Lie algebroids |
author |
Abrunheiro, L. |
author_facet |
Abrunheiro, L. Camarinha, M. |
author_role |
author |
author2 |
Camarinha, M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Abrunheiro, L. Camarinha, M. |
dc.subject.por.fl_str_mv |
Affine connection control systems Lie algebroids Lie groups Optimal control problems |
topic |
Affine connection control systems Lie algebroids Lie groups Optimal control problems |
description |
The purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10-01T00:00:00Z 2014-10 2016-06-15T11:43:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15731 |
url |
http://hdl.handle.net/10773/15731 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0219-8878 10.1142/S0219887814500388 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific Publishing Company |
publisher.none.fl_str_mv |
World Scientific Publishing Company |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137558927507456 |