Optimal control of affine connection control systems from the point of view of Lie algebroids

Detalhes bibliográficos
Autor(a) principal: Abrunheiro, L.
Data de Publicação: 2014
Outros Autores: Camarinha, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15731
Resumo: The purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field.
id RCAP_e65b482a09684f21f1d1cbc064ce48cf
oai_identifier_str oai:ria.ua.pt:10773/15731
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimal control of affine connection control systems from the point of view of Lie algebroidsAffine connection control systemsLie algebroidsLie groupsOptimal control problemsThe purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field.World Scientific Publishing Company2016-06-15T11:43:57Z2014-10-01T00:00:00Z2014-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15731eng0219-887810.1142/S0219887814500388Abrunheiro, L.Camarinha, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:54Zoai:ria.ua.pt:10773/15731Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:56.491687Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimal control of affine connection control systems from the point of view of Lie algebroids
title Optimal control of affine connection control systems from the point of view of Lie algebroids
spellingShingle Optimal control of affine connection control systems from the point of view of Lie algebroids
Abrunheiro, L.
Affine connection control systems
Lie algebroids
Lie groups
Optimal control problems
title_short Optimal control of affine connection control systems from the point of view of Lie algebroids
title_full Optimal control of affine connection control systems from the point of view of Lie algebroids
title_fullStr Optimal control of affine connection control systems from the point of view of Lie algebroids
title_full_unstemmed Optimal control of affine connection control systems from the point of view of Lie algebroids
title_sort Optimal control of affine connection control systems from the point of view of Lie algebroids
author Abrunheiro, L.
author_facet Abrunheiro, L.
Camarinha, M.
author_role author
author2 Camarinha, M.
author2_role author
dc.contributor.author.fl_str_mv Abrunheiro, L.
Camarinha, M.
dc.subject.por.fl_str_mv Affine connection control systems
Lie algebroids
Lie groups
Optimal control problems
topic Affine connection control systems
Lie algebroids
Lie groups
Optimal control problems
description The purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-01T00:00:00Z
2014-10
2016-06-15T11:43:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15731
url http://hdl.handle.net/10773/15731
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0219-8878
10.1142/S0219887814500388
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv World Scientific Publishing Company
publisher.none.fl_str_mv World Scientific Publishing Company
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137558927507456