Stepwise evolution of the centriole-assembly pathway
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.7/726 |
Resumo: | The centriole and basal body (CBB) structure nucleates cilia and flagella, and is an essential component of the centrosome, underlying eukaryotic microtubule-based motility, cell division and polarity. In recent years, components of the CBB-assembly machinery have been identified, but little is known about their regulation and evolution. Given the diversity of cellular contexts encountered in eukaryotes, but the remarkable conservation of CBB morphology, we asked whether general mechanistic principles could explain CBB assembly. We analysed the distribution of each component of the human CBB-assembly machinery across eukaryotes as a strategy to generate testable hypotheses. We found an evolutionarily cohesive and ancestral module, which we term UNIMOD and is defined by three components (SAS6, SAS4/CPAP and BLD10/CEP135), that correlates with the occurrence of CBBs. Unexpectedly, other players (SAK/PLK4, SPD2/CEP192 and CP110) emerged in a taxon-specific manner. We report that gene duplication plays an important role in the evolution of CBB components and show that, in the case of BLD10/CEP135, this is a source of tissue specificity in CBB and flagella biogenesis. Moreover, we observe extreme protein divergence amongst CBB components and show experimentally that there is loss of cross-species complementation among SAK/PLK4 family members, suggesting species-specific adaptations in CBB assembly. We propose that the UNIMOD theory explains the conservation of CBB architecture and that taxon- and tissue-specific molecular innovations, gained through emergence, duplication and divergence, play important roles in coordinating CBB biogenesis and function in different cellular contexts. |
id |
RCAP_e7701fa891b54690a58fed2e676d7e15 |
---|---|
oai_identifier_str |
oai:arca.igc.gulbenkian.pt:10400.7/726 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Stepwise evolution of the centriole-assembly pathwayCentrioleBasal bodyEvolutionDrosophilaFlagellaComparative genomicsThe centriole and basal body (CBB) structure nucleates cilia and flagella, and is an essential component of the centrosome, underlying eukaryotic microtubule-based motility, cell division and polarity. In recent years, components of the CBB-assembly machinery have been identified, but little is known about their regulation and evolution. Given the diversity of cellular contexts encountered in eukaryotes, but the remarkable conservation of CBB morphology, we asked whether general mechanistic principles could explain CBB assembly. We analysed the distribution of each component of the human CBB-assembly machinery across eukaryotes as a strategy to generate testable hypotheses. We found an evolutionarily cohesive and ancestral module, which we term UNIMOD and is defined by three components (SAS6, SAS4/CPAP and BLD10/CEP135), that correlates with the occurrence of CBBs. Unexpectedly, other players (SAK/PLK4, SPD2/CEP192 and CP110) emerged in a taxon-specific manner. We report that gene duplication plays an important role in the evolution of CBB components and show that, in the case of BLD10/CEP135, this is a source of tissue specificity in CBB and flagella biogenesis. Moreover, we observe extreme protein divergence amongst CBB components and show experimentally that there is loss of cross-species complementation among SAK/PLK4 family members, suggesting species-specific adaptations in CBB assembly. We propose that the UNIMOD theory explains the conservation of CBB architecture and that taxon- and tissue-specific molecular innovations, gained through emergence, duplication and divergence, play important roles in coordinating CBB biogenesis and function in different cellular contexts.Fundação Calouste Gulbenkian; Fundação para a Ciência e Tecnologia scholarships and grants: (POCI2010); Câmara Municipal de Oeiras; EMBO Installation Grant.Company of BiologistsARCACarvalho-Santos, Z.Machado, P.Branco, P.Tavares-Cadete, F.Rodrigues-Martins, A.Pereira-Leal, J. B.Bettencourt-Dias, M.2016-12-02T13:58:07Z2010-04-142010-04-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.7/726engStepwise evolution of the centriole-assembly pathway Zita Carvalho-Santos, Pedro Machado, Pedro Branco, Filipe Tavares-Cadete, Ana Rodrigues-Martins, José B. Pereira-Leal, Mónica Bettencourt-Dias J Cell Sci 2010 123: 1414-1426; doi: 10.1242/jcs.06493110.1242/jcs.064931info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-29T14:35:07Zoai:arca.igc.gulbenkian.pt:10400.7/726Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:11:57.418043Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Stepwise evolution of the centriole-assembly pathway |
title |
Stepwise evolution of the centriole-assembly pathway |
spellingShingle |
Stepwise evolution of the centriole-assembly pathway Carvalho-Santos, Z. Centriole Basal body Evolution Drosophila Flagella Comparative genomics |
title_short |
Stepwise evolution of the centriole-assembly pathway |
title_full |
Stepwise evolution of the centriole-assembly pathway |
title_fullStr |
Stepwise evolution of the centriole-assembly pathway |
title_full_unstemmed |
Stepwise evolution of the centriole-assembly pathway |
title_sort |
Stepwise evolution of the centriole-assembly pathway |
author |
Carvalho-Santos, Z. |
author_facet |
Carvalho-Santos, Z. Machado, P. Branco, P. Tavares-Cadete, F. Rodrigues-Martins, A. Pereira-Leal, J. B. Bettencourt-Dias, M. |
author_role |
author |
author2 |
Machado, P. Branco, P. Tavares-Cadete, F. Rodrigues-Martins, A. Pereira-Leal, J. B. Bettencourt-Dias, M. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
ARCA |
dc.contributor.author.fl_str_mv |
Carvalho-Santos, Z. Machado, P. Branco, P. Tavares-Cadete, F. Rodrigues-Martins, A. Pereira-Leal, J. B. Bettencourt-Dias, M. |
dc.subject.por.fl_str_mv |
Centriole Basal body Evolution Drosophila Flagella Comparative genomics |
topic |
Centriole Basal body Evolution Drosophila Flagella Comparative genomics |
description |
The centriole and basal body (CBB) structure nucleates cilia and flagella, and is an essential component of the centrosome, underlying eukaryotic microtubule-based motility, cell division and polarity. In recent years, components of the CBB-assembly machinery have been identified, but little is known about their regulation and evolution. Given the diversity of cellular contexts encountered in eukaryotes, but the remarkable conservation of CBB morphology, we asked whether general mechanistic principles could explain CBB assembly. We analysed the distribution of each component of the human CBB-assembly machinery across eukaryotes as a strategy to generate testable hypotheses. We found an evolutionarily cohesive and ancestral module, which we term UNIMOD and is defined by three components (SAS6, SAS4/CPAP and BLD10/CEP135), that correlates with the occurrence of CBBs. Unexpectedly, other players (SAK/PLK4, SPD2/CEP192 and CP110) emerged in a taxon-specific manner. We report that gene duplication plays an important role in the evolution of CBB components and show that, in the case of BLD10/CEP135, this is a source of tissue specificity in CBB and flagella biogenesis. Moreover, we observe extreme protein divergence amongst CBB components and show experimentally that there is loss of cross-species complementation among SAK/PLK4 family members, suggesting species-specific adaptations in CBB assembly. We propose that the UNIMOD theory explains the conservation of CBB architecture and that taxon- and tissue-specific molecular innovations, gained through emergence, duplication and divergence, play important roles in coordinating CBB biogenesis and function in different cellular contexts. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-04-14 2010-04-14T00:00:00Z 2016-12-02T13:58:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.7/726 |
url |
http://hdl.handle.net/10400.7/726 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Stepwise evolution of the centriole-assembly pathway Zita Carvalho-Santos, Pedro Machado, Pedro Branco, Filipe Tavares-Cadete, Ana Rodrigues-Martins, José B. Pereira-Leal, Mónica Bettencourt-Dias J Cell Sci 2010 123: 1414-1426; doi: 10.1242/jcs.064931 10.1242/jcs.064931 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Company of Biologists |
publisher.none.fl_str_mv |
Company of Biologists |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130574746550272 |